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Abstract

Scenario-based programming (SBP) is an evolving programming paradigm

that enables the creation of systems with complex behavior from interac-

tion of simple scenarios. The interacting scenarios can monitor and restrict

each other, spawn new scenarios, and interact with the system’s environment.

Among the advantages of SBP amenity to incremental development and to

formal analysis, and the ability to align the code with system requirements.

The focus of this work is a variant of SBP called Behavioral Programming

(BP). Scenarios in BP describe sequential system behaviors, and are thus

called behavior threads, or b-threads, for short. B-threads interact with each

other and with their environment using events, which they can request, wait-

for, and block. A program written in BP — called a b-program — groups

b-threads and provides them services such as event selection and environment

interaction. B-programs are written using ordinary code, making them easy

to adopt for practicing software engineers, as they allow using standard tools,

such as existing text editors and version control systems.

This dissertation aims to bring BP closer to general software engineering.

Its core is an extensible and modular definition of BP, based on a holistic

approach for analysis and execution of b-programs. This definition — backed

by a working tool suite called BPjs — views b-programs as models, and so

b-program execution becomes an operation to be performed on a model, sim-

ilar to model checking or state-space analysis. By defining extension points

such as event selection algorithms and execution trace inspections, the pro-

posed definition allows practitioners and researchers to easily extend, refine,

and taylor BP to their needs, without having to deal with the infrastructure

required for implementing a BP platform from scratch.

To enable an integrated system architecture, where b-programs take care

of high-level decisions, and ordinary code handles simpler, low-level tasks, we

introduce a bi-directional communication protocol between b-programs and

ordinary software systems. This protocol facilitates reading input and feeding

xii



it to the b-program, and listening to decisions made by the b-program and

translating them to actions, such as actuating engines, writing to a database,

or updating a GUI presentation layer.

Said BP model is not necessarily the input from the user. We present a

way of translating models created in other modeling languages, diagrammatic

or textual, to BP. The proposed methodology queries the native description

of a model and translates the query results to b-threads. We demonstrate this

approach on the Live Sequence Charts (LSC) language, and show how it can

be used to examine semantic variations of the language being translated.

The end goal of this work is to enable BP-based model driven engineering

— a development methodology where analyzable b-programs can be embedded

in ordinary systems. To this end, we improved the analysis and verification

of b-programs. Specifically, we describe verification of safety properties, and

an extension of BP that allows verification of liveness properties. We identify

two types of liveness violations, and examine a case where a safety property is

better presented in liveness terms. We back these concepts by working code —

additions to our BPjs suite discussed above. We report on two projects where

we used BPjs as the modeling core in a model-driven engineering setting. The

first project is an autonomous rover required to track a leading rover while

maintaining safe distance. The second project is an on-board control software

for a satellite. In the latter, we also demonstrate how BP can be used to

orchestrate system tests.

Keywords: Behavioral Programming, Control, Reactive Systems, Executable

Modeling, Model Driven Engineering (MDE), Model Based Software Engineer-

ing (MBSE), Model Analysis, Verification.
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Chapter 1

Introduction

Controlling complexity is the essence of computer programming.

– Brian Kernighan [65]

Even without the hardware layers that they are built upon, software sys-

tems are immensely complex structures. The programmer must control this

complexity in a way that allows for the development and delivery of systems

that fulfill client requirements, and are free of critical bugs, while keeping to

project schedules and budget limits. Or — if worst comes to worst — to pro-

vide an accurate prediction of the additional time and resources required to

deliver the system.

The principal task of the software engineer runs much deeper than deliv-

ering a single version of a software system. Software engineers must organize

their code such as to facilitate straightforward adaption to changing require-

ments, and to enable software updates by way of evolution from earlier versions

— rather than by rewriting the system from the ground up. These impera-

tives direct software design toward separating the underlying code into clear

modules, defining interfaces, creating documentation, and other associated

activities so as to make a codebase manageable and reusable.

As complexity is central to software engineering, it is not surprising that

one of the foundational texts of the field deals with complexity itself. In No

Silver Bullet [16], Brooks distinguishes between inherent complexity, stemming

1



from the problem a program is attempting to solve, and accidental complex-

ity, emerging from the technicalities of implementing the program itself with

the available technologies, hardware limitations, and chosen design. The pa-

per, published in 1986, goes on to claim that since many of the challenges

of accidental complexity had been addressed by advances such as high-level

programming languages and operating systems, there will be no “silver bullet”

creating an order-of-magnitude improvement in speed or quality of software

engineering for at least another 10 years. Notably, Brooks did not claim that

the challenge of accidental complexity had been completely resolved; rather,

he suggested that handling it required less than 90% of development e↵ort.

Proven correct, in 1995 Brooks extended his prediction for another 10 years,

noting that Complexity is the business we are in, and complexity is what limits

us [17, C. 17].

The work presented here focuses on engineering the inherent complexities of

reactive software systems. These systems, as defined by Harel and Pnueli [52],

react continuously to stimulations, whether from their environment or from

internal sources. Reactive systems are very common, and include web servers,

IoT devices, and autonomous vehicles. Because these systems maintain a

complex state, their behavior at any given point is an outcome of multiple

concurrent internal processes, together with all the input accumulated during

a given run. This property makes it hard for humans to develop and test such

systems, as humans tend to think linearly [33].

Behavioral Programming (BP) [50], a programming paradigm focused on

creating complex system behavior by interleaving relatively simple linear sce-

narios, o↵ers an elegant means of building such systems. A program written

in BP — called a b-program — consists of numerous linear scenarios (called

b-threads). B-threads communicate using a simple event-based protocol: they

can request, wait-for, and block events. The BP runtime repeatedly selects

events that are requested and not blocked (see Section 2.1).

I got my first “grown up” job in software engineering after graduating in

2



2006. While I took a mandatory class about formal requirements at university,

at the time I didn’t think they were relevant for practitioners. I knew about

UML class diagrams and understood that UML had other diagrams too; but

nevertheless, I wasn’t sure what exactly they were, and in any case viewed them

as useful doodles and not as a visual notation with formal semantics. However,

even though I programmed in Java — a high-level programming language by

all accounts — it didn’t feel to me that its level was “high” enough for the

engineering challenges I was facing. Granted, unlike programmers in the 1950s

and 60s and 70s, I did not have to deal with assembly-level accidental com-

plexities like jumps, labels, little/big endians, and direct memory addressing.

Unlike my father, I have never had to gather up a program from the floor

of a bus, after its punch cards spilled out of their box. I was always free to

code using lists, objects, and maps directly, and do so on a very convenient

workstation.

But the software itself, a multi-million dollar flight management system

for commercial airlines — its requirements alone spanning thousands of pages,

maintained by a specialized team — was not about objects and lists. It

was about passengers, check-in procedures, baggage, and seat upgrade flows.

Object-Oriented programming does do a good job in describing the data as-

pect of these concepts, because it allows programmers to code using terms

from the problem domain. As an example, one can work with an object called

Flight. But, when faced with the challenge of describing system behavior

— e.g. the processes that must take place if a passenger who has ordered

a special meal, and has missed her connecting flight, must be upgraded and

moved, luggage and all, to a flight with a compatible partner airline in order

to minimize arrival delay — we programmers had to fall back on writing algo-

rithms to run on data structures, not fundamentally di↵erent than low-level

procedural languages.

When multiple requirements pertained to the same concepts, we were

obliged to manually compose these requirements in code when possible — if

at all possible, given that requirements often contradicted each other. When

requirements changed (as they often did, and still do), the code then had to
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be updated to reflect the new changes, while still fulfilling the un-changed re-

quirements — again, only if at all possible, given that changes of this nature

may very well introduce contradictions into the system.

In subsequent positions, and in other projects, my sense about the insuf-

ficiency of high-level programming languages remained. When I decided to

return to academia and study Behavioral Programming, I was looking forward

for a break from the trenches of software engineering. The general plan was

to go on an intellectual journey, guided by interests rather than applicabil-

ity or relevance. As I write this, some 8 years on, I realize that this journey

actually led me to an exploration of this gap between the high-level aspira-

tions of current programming languages and the level of abstraction required

for describing requirements for system behaviors. Worse still: I fear that the

research presented here might be both relevant and applicable (see Chapters 5

and 6).

The research presented here extends BP, explores its potential as a tool

for executable modeling, and enables integrating BP-based models in tradi-

tional software systems. Models help address inherent complexity directly, by

describing system behavior at the requirement level. BP is a good founda-

tion for modeling behavioral system requirements, because b-threads resemble

the informal textual requirements that they describe (this property of BP is

known as requirement alignment). Thus, future flight management systems

— and other systems as well — can be created with their requirements de-

scribed in a formal, executable manner, as part of their code. This will allow

formal requirement analysis, minimize client-programmer misunderstandings,

and — because models can serve as a high-level documentation — reduce code-

documentation mismatches. Most importantly, it creates an elegant framework

for programmers to describe what the system is required to do — and what not

— and have the BP runtime figure a way of composing these requirements, if

and when possible. If requirements contradict each other, automated analysis

tools will be able to detect the contradiction and highlight it in an informative

manner (see Chapter 4).

Building on Brooks’ distinction between accidental and inherent complex-
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ity, we can divide the history of software engineering into two distinct phases,

and to propose a third. This proposed division is based on the terms that are

used in code:

1. Machine Terms: Programs written for machines. Code directly handles

low-level, machine-specific issues such as registers, navigation in unstruc-

tured code, memory o↵sets in records, etc. At this stage, programmers

deal mostly with accidental complexity.

2. Computer-Science Terms: Programs written for other programmers,

translated into machine code using optimizing compilers. The code han-

dles data structures and algorithms. At this stage, programmers deal

with both accidental and inherent complexity. Most instances of acci-

dental complexity occur during attempts to describe system behavior.

3. Requirement Terms: Programs written (in part) for clients or domain

experts. The code contains requirements in a direct, executable form.

Accidental complexity in describing system behavior is significantly re-

duced.

In [39], Harel responds to Brooks’ “No Silver Bullet” by proposing exe-

cutable modeling as an approach that would provide a “truly major improve-

ment” in software engineering. Brooks agrees that “modeling does address the

essence”, and thus the use of executable models could be “revolutionary” [17,

C. 17]. Both agreed, however, that executable modeling in and of itself will

not provide the “silver bullet” of Brooks’ definition by 1996.

Per Brooks, his 1986 paper was not lamenting a bleak future, but rather

presenting an optimistic statement, the understanding that “there is no royal

road, but there is a road”. I hope the work presented here helps paving it.

1.1 Contributions

This dissertations makes the following contributions:
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1. An extensible definition of BP, backed by an execution and analysis

engine (BPjs). Beyond execution, the developed engine treats b-program

execution state as data, enabling program analysis.

2. An integration protocol for embedding BP models in traditional software

systems.

3. An extensible definition for event selection algorithms, allowing the usage

of algorithm implementation during both execution and analysis. Using

this definition for proposing new event selection algorithms.

4. New BP idioms:

• Synchronization point metadata, allowing b-threads to pass relevant

data to the event selection algorithm.

• Adding an assert instruction to BP. This allows for the verification

of safety properties during program analysis, and emergency stops

during execution.

• Adding a “hot b-thread” concept to BP. This allows for the verifi-

cation of liveness properties.

• An interrupting event set. This is a runtime-level support facility

for common BP design pattern, where b-threads specify a set of

events that, if any one of them is selected, the b-thread will quit.

• Adding a unix-like fork instruction to BP. This is di↵erent from

the existing b-thread registration instruction, in that it duplicates

the calling b-thread’s heap and stack.

5. The implementation and integration of model-checking algorithms for

BP, in the BP analysis framework. Model Checking of safety and liveness

properties of BP models. The analysis engine presented here is expressive

enough to verify LTL expressions [90].

6. A definition of two classes of liveness violations for b-programs, and an

additional case where safety violations are better presented as liveness

violations.
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7. A methodology for Model Driven Engineering using BP as the model

layer, based on the above contributions.

8. A method for describing the executable semantics of formal languages

using BP. Introducing the concept of construct agent b-threads (CABs),

b-threads that represent constructs in the defined language during exe-

cution and analysis.

9. A set of documentation, examples, and two case studies of the proposed

BP definition and of BPjs. These examine and document the above

contributions.

10. A new approach for state serialization and comparison. During program

analysis, this approach allows visited state detection, and the exploration

of multiple execution branches. To this end, we contributed code to

Mozilla’s Rhino, the JavaScript engine our system is based on.

1.2 Dissertation Outline

The rest of this dissertation is organized as follows: Chapter 2 discusses the

foundations on which this work relies, including an introduction to Behavioral

Programming. It additionally presents related work. Chapter 3 introduces

our extensible definition to BP, our added idioms, and our BP execution and

analysis engine (BPjs). Chapter 4 describes how a b-program can be verified

using BPjs, and discusses various violation types. Chapter 5 proposes a way

of using BP for defining the executable semantics of formal languages. Chap-

ter 6 presents two use cases where BPjs is used as the model execution layer

in model-driven engineering: a satellite, and an autonomous rover tracking

another rover. Chapter 7 concludes and proposes future research directions.
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Chapter 2

Background and Related Work

This chapter presents the backdrop for the work reported in this dissertation.

We start by describing Behavioral Programming (BP) [80], the programming

paradigm on which my work is based. Next, we take a look at existing BP

libraries and tools. Behavioral Programming is a type of Scenario-Based Pro-

gramming (SBP), and so our next stop will broaden our view and examine

other scenario-based languages. Finally, we consider other executable mod-

eling and verification tools, in an attempt to present some of the context in

which SBP lives.

2.1 Behavioral Programming

BP was introduced in 2010 by Harel, Marron, and Weiss [50, 51], as a pro-

gramming paradigm focusing on reactive systems — systems that continuously

react to external and internal stimuli [52]. In BP, programs are composed of

multiple threads of behavior. These threads, called b-threads, run concurrently,

communicating with each other using a synchronized, event-based protocol. A

program composed of b-threads is called a b-program.

The b-thread synchronization protocol works as follows: when a b-thread

wants to synchronize with its peers, it submits a synchronization statement to

the b-program’s event arbiter. This statement declares the events the b-thread

requests to be selected, the events that it waits for (but does not request), and
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Figure 2.1: Execution cycle of a b-program. B-threads run in parallel. To
communicate with each other or with the environment, b-threads submit syn-
chronization statements to the b-program’s event arbiter. After submitting a
statement, the submitting b-thread is paused. When all b-threads have sub-
mitted their statements, the b-program is said to have reached a synchroniza-
tion point. At this point, the event arbiter selects an event that was requested
and not blocked, and resumes all the b-threads that requested or waited for
that event.

the events that it would like to block (forbid, prevent from being selected).

After submitting the statement, the b-thread is then paused by the BP run-

time. When all the b-threads have submitted their statements, the b-program

is said to be at a synchronization point. When it arrives at such a point,

the b-program’s arbiter selects an event that has been requested and is not

blocked. It then resumes all the b-threads that requested or waited for that

event. The other b-threads will remain paused until an event that they re-

quested or waited for is selected. Their synchronization statements will be

carried over to subsequent synchronization points, a process that continues

until they are resumed. When running, b-threads can terminate, spawn new

b-threads, and invoke assertions. Figure 2.1 illustrates this cycle.

We noted earlier that synchronization statements specify the events that a

b-thread requests, waits for, and blocks. Interestingly, these specifications are

of di↵erent types. The requested events must be iterable, so the arbiter can
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generate candidate events for selection. The waited-for and blocked event sets

can be specified logically, using a predicate1. In other words, these are pure

mathematical sets, and not necessarily iterable data structures.

2.1.1 A Simple B-Program

Following the great tradition set forth by Brian Kernighan in a 1974 inter-

nal memorandum about the C programming language, we will demonstrate

the basics of BP using a “hello, world” program. The code used here is for

BPjs [10], a tool for writing and analyzing b-programs written in JavaScript.

We developed BPjs as part of this research project; it is described in depth in

Chapter 3.

Our goal in this subsection is to create a b-program that will select two

events: HELLO and WORLD, in this order. To this end, we will consider a few

programs that may or may not be correct.

The “hello, world” version in Listing 2.1 begins by defining the two events

involved. It then registers a single b-thread, which requests these two events

in sequence. Since it is the only b-thread in its b-program, these events are

not blocked, and are the only available events for the arbiter to choose from.

Thus, the arbiter selects them in the order that they have been requested, and

the program produces the correct event trace.

Some BPjs-specific technicalities should be clarified before we progress to

the examples below. The code is written in JavaScript. The semantics of

the programs are those of JavaScript, except for concurrency: JavaScript is

mostly a single-threaded language, whereas code written in BPjs is inherently

concurrent, and may be paused and resumed at synchronization points. All

functionalities stemming from Behavioral Programming are accessed through

the bp object. B-threads are JavaScript functions that take no arguments, and

are registered as b-threads with bp.

Let us now elaborate the example. We have decided to split the program,

based on its sub-tasks. In this case, one sub-task will be to emit the HELLO

1
Formally, a function f : Event ! Boolean

10



Listing 2.1: Sequential version of “hello, world” program
1 var HELLO = bp.Event("hello");
2 var WORLD = bp.Event("world");
3

4 bp.registerBThread(function (){
5 bp.sync({ request:HELLO });
6 bp.sync({ request:WORLD });
7 });

Listing 2.2: A modularized version of “hello, world” program. This program
may omit the events in incorrect order, since the b-threads are not coordinated.
1 bp.registerBThread("bt -hi", function (){
2 bp.sync({ request:HELLO });
3 });
4

5 bp.registerBThread("bt -world",function (){
6 bp.sync({ request:WORLD });
7 });

event. The other sub-task will be to emit the WORLD event. Listing 2.2 contains

a b-program broken into two b-threads, one for each sub-task. This structure

is intuitive, very cohesive, and works — about 50% of the time.

The explanation for the frequent failure of the the program in Listing 2.2

is that the b-threads are not coordinated. That is: at the first synchronization

point of the split b-program, both events are requested, but neither event is

blocked. Thus, the arbiter is free to choose either of these events. In particular,

it can choose WORLD before it chooses HELLO, which would make the b-program

emit the events in the wrong order. The left state-space graph in Figure 2.2

illustrates this state of a↵airs.

To fix this, we add the hello world patch b-thread (Listing 2.3) to the

split b-program. This b-thread blocks WORLD until HELLO is selected, thus

forcing the b-program’s event arbiter to select the events in the correct order.

The right graph of Figure 2.2 shows the state-space of the patched program.

The last example demonstrates BP’s suitability for incremental, modular

software development. We have changed the overall behavior of our b-program

by adding new code, rather than by changing existing one. This addition can

be done and undone without amendments to the rest of the program — useful
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Listing 2.3: A b-thread imposing correct exdecution order on the b-program
in Listing 2.2.
1 bp.registerBThread("hello world Patch", function (){
2 bp.sync({ waitFor:HELLO , block:WORLD });
3 });

hello-world.js

start

[]

[world]

world

[hello]

hello

[world, hello]

hello

[hello, world]

world

hello-world.js

start

[]

[hello]

hello

[hello, world]

world

1 var HELLO = bp.Event("hello");
2 var WORLD = bp.Event("world");
3

4 bp.registerBThread("hello",
5 function (){
6 bp.sync({ request:HELLO });
7 });
8 bp.registerBThread("world",
9 function (){

10 bp.sync({ request:WORLD });
11 });
12 bp.registerBThread("order",
13 function (){
14 bp.sync({ waitFor:HELLO ,
15 block:WORLD });
16 });
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Figure 2: Left: A “Hello World” b-program written and analyzed using BPjs. The b-

program Consists of 3 b-threads: two for requesting the HELLO and WORLD events, and one

for ensuring that the HELLO event is selected before the WORLD event is. Right: State spaces

of the b-program on the left, with and without the order b-thread (middle and right,

respectively). The diagrams were created automatically using the StateSpaceMapper [17].
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This code also demonstrates how BPjs works. BPjs programs use regular149

JavaScript, with a bp object added to their global scope. That bp object is150
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Code

(1) Hello World

(2) Order

State-Space

Hello World Hello World + Order

Figure 2.2: Two code modules, and state spaces of the b-programs they com-
pose. Module Hello World consists of two b-threads: one requesting the HELLO
event, and the other requesting WORLD. A b-program comprised of these b-
threads alone is free to choose the order in which the events occur (left state-
space). Adding the Order module eliminates the erroneous left branch, as its
order b-thread blocks WORLD until HELLO is selected.
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Listing 2.4: A b-thread adding the event incremental between the events
HELLO and WORLD.
1 bp.registerBThread("add incremental", function (){
2 bp.sync({ waitFor:HELLO });
3 bp.sync({ request:bp.Event("incremental"), WORLD });
4 });

if we decide that the order of the events is not important, or that it needs to

be set using another algorithm.

To further demonstrate BP’s incrementality, we will conclude by updat-

ing the trace of our b-program, such that it becomes <HELLO, incremental,

WORLD>. We can do this by simply adding the add incremental b-thread in

Listing 2.4 to the b-program. No other change is needed.

2.2 And a Bit More Formally

This section proposes a formal mathematical foundation for b-program execu-

tion analysis2. The definition we give here adapted version of definition given

in [50]. This adaptation — adding waitFor as an explicit part of a b-thread

definition rather than having it implicitly defined via a transition system —

creates a definition is more closely aligned with BPjs’ syntax.

Recall that a labeled transition system is defined as a quadruple hS,E,!
, initi, where S is a set of states, E is a set of events, ! is a transition relation

contained in (S ⇥ E) ⇥ S, and init 2 S is the initial state [64]. The runs of

such a transition system are sequences of the form s0
e1�!s1

e2�! . . .
ei�!si . . . where

s0 = init, and 8i = 1, 2, . . . , si 2 S, ei 2 E, and si�1
ei�!si 2!.

Definition 2.2.1 (b-thread). A b-thread is a tuple hS,E,!, init, R,W,Bi
where hS,E,!, initi forms a labeled transition system, R : S ! 2E associates

a state with the set of events requested by the b-thread when in it, W : S ! 2E

associates a state with the set of events waited for by the b-thread when in it,

and B : S ! 2E associates a state with the set of events blocked by the b-thread

2
The title of this section is of course a reference to sections in Harel and Marelly [48]

with a similar role.
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when in it. A b-thread enters a state si when requesting synchronization (for

BPjs, this is done by invoking bp.sync).

The runs of a set of b-threads (a b-program) are defined below. This is the

definition given in [50], with the addition of W .

Definition 2.2.2 (b-program execution). The runs of a set of b-threads (called

a b-program):
�
hSi, Ei,!i, initi, Ri,Wi, Bii

 n

i=1

are the runs of the labeled transition system hS,E,!, initi, where S =

S1⇥· · ·⇥Sn, E =
Sn

i=1 Ei, init = hinit1, . . . , initni, and ! includes a transition

hs1, . . . , sni
e�!hs01, . . . , s0ni

if and only if:

e 2
n[

i=1

Ri(si)

| {z }
e is requested

^
e /2

n[

i=1

Bi(si)

| {z }
e is not blocked

and, for all i = 1, . . . , n:

�
e 2 Wi(si) [Ri(si) ) si

e�! s
0
i

�
| {z }

advancing b-threads

^�
e /2 Wi(si) [Ri(si) ) si = s

0
i

�
| {z }

non-advancing b-threads

This definition allows for more than one run of a given set of b-threads,

depending on the order in which events are selected from the set of requested

and not blocked events. This non-determinism is one of BP’s strengths, as it

allows BP to specify partial order over events.

2.3 Related Work

A number of BP runtime and analysis implementations exist, spanning a va-

riety of programming languages of di↵erent types:
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BPJ [50], a BP library for writing behavioral programs using Java, is

the first BP library. Over time, a few mutually incompatible versions have

emerged, as researchers forked the code to adapt it to specific needs. A b-

program verifier for detecting safety violations was presented in [46]. For

technical reasons, it cannot work beyond Java 5.

BPC [42] is a framework for writing behavioral programs in C++. It o↵ers

customizable events and event selection. BPC also supports time constraints

— if an event is not selected within a given timeout, b-threads are resumed,

with no event selected. BPC is not designed to be embedded in host appli-

cations, but rather to run as a standalone framework. This a↵ects the way

BPC deals with inputs, as a b-thread that must wait for input will delay syn-

chronization. BPC supports limited verification, based on examining the state

graph of each b-thread, then composing and analyzing the program graph

using an external tool.

In [83], Marron, Weiss, and Weiner implement BP in Blockly [100], and

use this implementation to create a user interfaces for web applications. This

implementation is interesting, in that it achieves b-thread parallelism using

co-routines and a single OS thread. In this respect, it di↵ers from BPJ and

BPC, which use a single OS thread per b-thread, and from BPjs (Chapter 3),

which uses a pool of OS threads and a continuation mechanism.

Another BP-based library for developing front end for web applications is

react-behavioral3 by Luca Matteis. It relies on EcmaScript 6’s generators for

pausing b-threads after submitting synchronization requests.

Weiner, Weiss, and Marron present a proof-of-concept of BP working in

Erlang in [102]. Here, each b-thread runs in its own Erlang thread. Synchro-

nization statements are submitted to a central process, which also performs

event selection and reporting.

BP is one form of Scenario-based Programming (SBP) [23, 48], a paradigm

for creating executable models by combining independent, modular scenar-

ios. Each scenario describes a di↵erent aspect of overall desired and undesired

system behaviors. At runtime, an execution engine interweaves the various

3
https://github.com/lmatteis/react-behavioral
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scenarios. These compositional semantics enable the alignment of a software

system’s structure with the requirements it is expected to fulfill. Addition-

ally, SBP is intuitive, as it aligns well with how people think about complex

systems [33].

SBP was introduced through the language of Live Sequence Charts (LSC)

and its Play-Engine implementation [48]. LSC is a diagrammatic programming

language that extends classical message sequence charts, mainly through a

universal interpretation and two modalities: must/may, and monitor/execute.

Developed by Damm and Harel [23], the first implementation of this language

is Play-Engine [48]. A UML-compliant variant is implemented by the PlayGo

tool [47, 77]. The semantics of the PlayGo version, which di↵er slightly from

Play-Engine’s, are described in [82].

An LSC system consists of scenarios and objects. Each scenario describes

a facet of the system’s behavior, and is described in a live sequence chart

(abbreviated: LSC). Overall system behavior is the result of the concurrent

execution of all the LSCs that the specification contains.

ScenarioTools [36] is a modeling workbench, based on the Scenario Model-

ing Language (SML), a textual extension of LSC. ScenarioTools can combine

SML with graph transformation to model structural changes in the described

system. Models created with ScenarioTools are executable, and can be an-

alyzed through simulation. IOSM-K, a more recent version of SML, imple-

ments SML using the Kotlin programming language. Similar to the Blockly

BP implementation mentioned above, it relies on co-routines for pausing its

scenarios.

Scenario-based Programming research results cover, among others, run-

time lookahead (smart play-out) [45], synthesis [55, 69, 78], model-checking [46]

(see also Chapter 4), compositional verification [41], specification realizability

analysis [55, 79], abstraction-refinement mechanism [62], test generation [74],

automatic correction [44, 62], synchronization relaxation [40], and polymorphic

scenarios [75].

Scenario-Based Programming can inter-operate with other programming

paradigms. Harel, Marron, Nissim, and Weiss integrated SBP with fuzzy
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logic [49]. In [81], Marron, Hacohen, Harel, Mülder, and Terfloth integrate

SBP with Statecharts.

One key di↵erence between LSC-based languages (including SML variants)

and BP is that in LSC, events are messages sent from one object to another.

That is, LSCs model conversations between objects. When modeling an “am-

bient” event, with no inherent source or destination, LSC programmers often

use self-messages on a dedicated lifeline. In BP, on the other hand, events

are selected rather than sent. Accordingly, they do not have a source or a

destination. In order to implement LSC using BP, one can add source and

destination data to events (see Section 5.3).

Our description of BP above noted that the arbiter selects an event that

is “requested and not blocked”. This leaves a lot of wiggle room for the ar-

biter to determine which event, requested and not blocked, should be selected.

The first BP implementation, BPJ, selected events based on b-thread prior-

ity. With the original BPJ, each b-thread has a unique priority; the arbiter

selects the event that not blocked, and requested by the b-thread with the

highest priority. Subsequently, this was relaxed by adding a priority distance

parameter, called “b-thread epsilon”, to b-programs. After the relaxation, two

b-threads were considered as having the same priority if the di↵erence between

their unique priorities was less than the b-program’s b-thread epsilon.

Other event selection algorithms have also been proposed. Smart play-

out, presented by Harel et al. [45], uses formal verification methods to inform

event selection during runtime. An adaptive learning algorithm for optimal

event selection was developed by Eitan and Harel [26], and a planning-based

approach to event selection was developed by Segall and Harel [54]. When no

look-ahead is involved in the event selection algorithm, BP execution is com-

parable to näıve LSC’s play-out, as defined for Play Engine [48]. In particular,

the system might choose an event sequence that violates system requirements,

even when a non-violating sequence is available.

BPC, PlayGO, and BPjs take a more modular approach to event selection,

by applying the Strategy design pattern [32] to the event selection problem.

In this approach, the BP infrastructure allows the programmer to specify the
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event selection algorithm to be used.

BP’s event selection is essentially an agreement protocol, allowing multiple

b-threads (or, more generally, scenarios) to agree on an event. This does not

imply that the event must be explicitly requested, however. In [63], Katz,

Marron, Sadon, and Weiss propose a way of generating agreeable events on

the fly, using synchronization requests containing rich logical constraints, and

constraint solvers (such as SAT or SMT).

2.3.1 SBP Systems and Their Environment

BP, and SBP in general, were created for building reactive systems. Because

such systems react to their environment, the scenarios/b-threads must be able

to read data from it. In LSC, a special lifeline called ENV is responsible for rep-

resenting the environment. “Regular” lifelines communicate with it by sending

and receiving messages, similar to regular lifelines. Some LSC extensions al-

low making safety and liveness assumptions on the environment [78]. In BP,

events carrying data from the environment are either generated by b-threads

which access external resources and translate them to events, or by non-BP

parts of the system that pass these events through an API.

In order to simplify system scenario design, SBP systems often adopt the

assumption of Logical Execution Time [58], which claims that the execution

rate of internal events is much higher than that of external events; thus, a

burst of internal events in-between two external events (also called super-step)

will take zero time, relative to the external dynamics. When a system needs to

perform a long-running computation, it does so using a non-BP thread, which

sends the computation result to the running SBP system asynchronously. Sim-

ilar design patterns are used in GUI systems to prevent the user interface from

“freezing”.

In real-time applications, the Logical Execution Time assumption must be

validated, e.g., based on the sampling rates of sensors, hardware speed, and

expected computation duration. Our experience shows that this assumption

is realistic, as we used it to implement control software for a quad copter and
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for a satellite model (see Section 6.2).

2.3.2 Beyond Scenario-Based Programming

Scenario-Based Programming is a form of executable modeling — an ap-

proach that describes systems using formal system models with executable

semantics [99]. Other executable modeling languages include Executable UML

(xUML) [84] and Foundational UML (fUML) [86]. Both use a subset of the

UML diagrams, and an action language for creating models that can be ex-

ecuted and simulated. For example, xUML uses UML class diagrams to de-

fine classes, and UML state machine to define instance behavior. The idea

of creating a model from complementary formalisms is called heterogeneous

modeling [72].

Umple [73] takes a di↵erent approach to executable UML modeling, by

using code generation and language augmentation. It adds UML concepts to

mainstream languages, and can present UML models in code and graphically,

with bi-directional updates. An Umple developer can therefore define rela-

tions between classes using UML notation; Umple will generate the required

code when the model is realized. Umple uses UML Statecharts for modeling

dynamic system behavior. These state machines can be analyzed at the model

level, using execution scenarios [2]. Umple can generate code for Java, C++,

and PHP, making it platform-independent. Notably, Umple is implemented in

Umple, which shows its strength.

The above body of work focuses on system modeling. That is, the above

languages and systems attempt to capture a useful abstract view of the sys-

tem they they model, and assert its properties. JavaPathFinder (JPF) [57],

developed at NASA and open-sourced in 2005, takes a di↵erent approach: it

verifies Java programs directly.

JPF is a versatile modular Java virtual machine, aimed at program analysis

and verification. The core JPF system can verify a Java program by running

all possible thread interleaving combinations, and enumerating over all its

random decision points. JPF is a mature project with a large user community.
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Its many modules support advanced features, such as symbolic execution4 and

constraint solver integration5.

However, as with any verifier, JPF cannot escape the state explosion prob-

lem. Even though JPF supports partial order reduction, verifying concurrent

programs — which requires verification of many possible interleaving combina-

tions — is resource intensive. In Subsection 3.4.1, we compare the performance

of JPF and BPjs in verifying similar behavioral programs.

4
https://github.com/SymbolicPathFinder

5
https://github.com/psycopaths/jconstraints
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Chapter 3

BPjs — A Foundation for

Behavioral Programming Tools

A preliminary version of this paper was presented in Models 2018 [10]. The

text presented here is a Journal version of that conference paper, edited for

length and repetition.

This chapter presents BPjs, an extensible engine for running and analyzing

behavioral programs. BP was first introduced in 2010 [50]. Since then, a

number of tools for executing b-programs have been introduced, some which

also support various forms of verification (see Section 2.3). While some of these

tools are more mature than others, none present a holistic approach for the

analysis and execution of b-programs as does BPjs. BPjs treats b-programs

as data structures; consequently, model execution becomes a specific case of

model analysis. BPjs analyses b-program using direct execution, thus also

enabling the analysis of b-programs developed for extended versions of the

basic BP model.

BPjs was designed as a platform for creating tools based on BP. Its design

was informed by the existing body of work on BP, in that our objective is that

BPjs will be able to support most of these works. In the few specific cases that

a work disagreed on some aspect of BP (e.g. event selection), we created a

common interface around the disagreement area, and added extension points
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to BPjs. As a result, BPjs implements an extensible, generalized version of

BP. In particular, BPjs supports:

1. Extensible runtime design, which allows users to extend event types and

event selection strategies without changing BPjs itself.

2. A well-defined communication protocol between traditional software sys-

tems and b-programs, which allows for the embedding of BPjs in tradi-

tional applications, e.g., for creating systems using a model-driven engi-

neering approach.

3. Extensible analysis engine, which allows users to specify state and trace

inspections, and to identify single or multiple violations in a given b-

program. The analysis is done such that models developed with user-

defined extensions can also be analyzed.

4. Extensions to the synchronization statements, which allows b-threads

to submit an optional parameter that can be used by either the event

selection algorithm or the analysis engine.

Our objective with BPjs is to create an infrastructure that will allow de-

velopers to focus on the application at hand, or on the extension mechanisms

they want to develop, without the need to be concerned about core BP execu-

tion technicalities. As an example, we describe here how we implemented the

first tool, which supports the verification of liveness properties in b-programs.

To borrow a term from Gosling’s introduction of Java [34], BPjs was de-

signed as a “blue collar” tool suite, to make the working programmer’s job

easier. It handles the infrastructure required for BP, and allows programmers

to focus on the challenge they need to solve. We have used BPjs in a number

of projects, demonstrating thus that it can be used as a BP infrastructure in

developing complex and reliable reactive systems.

Good infrastructure is not purely technical issue, given that it also facil-

itates the discovery of theoretical results. For example, while developing the

BPjs-based verification tool, I found that liveness violations in scenario based
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programs can be divided into two types, with significantly di↵ering semantics.

To the best of my knowledge, this distinction had not been identified hitherto.

3.1 Background and Related Work

Numerous BP runtime and analysis implementations exist (see Section 2.3).

However, only two of these can be considered as attempts to create a robust

research infrastructure (as opposed to a proof of concept).

BPj [50] allows for writing behavioral programs using Java. Unlike BPjs,

BPJ was not designed to be an embedded, modular framework. Over time, a

few mutually incompatible versions emerged, as researchers forked the code to

adapt it to specific needs. A b-program verifier was presented in [46]. However,

it can only detect safety violations, and for technical reasons cannot work

beyond Java 5. Our work on BPj informed many of the decisions we took while

designing BPjs. In particular, the decisions to use a modular design, an IDE-

agnostic project format, and an open, collaboration-friendly code repository

all emerged from our experience with BPJ.

BPC [42] is a framework for writing behavioral programs in C++. Like

BPjs, it o↵ers customizable events and event selection strategies. However,

and unlike BPjs, BPC is not designed for embedding b-programs in host ap-

plications, and supports limited verification, using model transformation. BPC

supports time constraints, a feature not currently supported by BPjs.

BPC and BPj both use an OS thread for each b-thread, making b-threads

expensive. This structure encourages programmers to reduce the amount of b-

threads used in their b-programs — a serious design limitation, the equivalent

of requiring Object Oriented programmers to limit the amount of objects in

their programs. BPjs, on the other hand, allows multiple b-threads to use a

single OS thread. Where required, BPjs can run a b-program with numerous b-

threads using a single OS thread. While this is ostensibly a technical di↵erence,

it allows programmers using BPjs to use as many b-threads as required by their

design. Subsection 3.4.1 presents a case where a b-program successfully runs

on BPjs, but exhausts computer resources on BPJ.
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3.2 Software Framework

The overarching goal of BPjs is to provide a common infrastructure for exten-

sion and usage of BP. To this end, it provides facilities to execute, analyze, and

embed b-programs. BPjs supports an open-ended, parameterized version of

BP, where programmers can alter event selection strategies, event types, and

inspections used in the verification process. BPjs also provides an interface,

using the listener design pattern, for host application to act based on selected

events.

3.2.1 Additions to the BP Paradigm

In common with most programming paradigms, Behavioral Programming de-

fines a limited number of basic concepts, which gives a lot of freedom to im-

plementors of concrete systems. Our goal in creating BPjs was to support

as much of the existing body of work as possible, but without sacrificing the

extensibility that would underpin future research and use. To this end, we im-

plemented the following additional concepts in BPjs. Some of these concepts

are orthogonal to BP semantics, while others had to be embedded in it.

Assertions B-threads can make assertions while being executed, by calling

bp.ASSERT(expr,expln) (where expr is a boolean expression, and expln is

a string containing a human-readable message. If expr evaluates to false,

the assertion fails, and the next synchronization of the b-program is marked

as invalid. If a b-program arrives at an invalid state, it is considered to be

violating its requirements. During analysis, the trace leading to the invalid

state will be presented as a counter example. During execution, the violating

b-program will be halted. BPjs will report the failed assertion to the host

application, which allows the host to recover in an informed way.

Hot Synchronization Points A b-thread signals that it must eventually

advance beyond a synchronization point by marking the point as hot. Through

analysis, BPjs can report runs where a b-thread is trapped in a hot synchro-
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nization point indefinitely. Marking a synchronization point as hot is done

by calling bp.hot(true).sync(. . .). The term hot is borrowed from Live

Sequence Charts [23], where it has a similar meaning.

Synchronization Point Parameters In classic BP, b-threads submit only

a synchronization statement when they synchronize with their peers. BPjs

allows b-threads to pass an optional, second parameter while synchronizing.

This parameter is part of the b-thread’s synchronization statement, and as such

is available to all the algorithms working with the state of a b-program at a

synchronization point. These include event selection algorithms and execution

trace inspectors. One example of the use of this parameter is an event selection

strategy, which allows b-threads to specify their priority at any synchronization

point.

Interrupts BPjs allows b-threads to specify interrupting events, in addition

to specifying requested, waited-for, and blocked ones. If a b-program selects

an event that a b-thread has specified as interrupting, then that b-thread is

terminated. B-threads may register a “final words” function, which will be

invoked in such cases.

Interrupting events is a convenience feature, and does not add strength to

the language. Rather, they are an incorporation of the following design pattern

into BPjs’ syntax: When an event make a b-thread no longer required, this

b-thread waits for it, together with the events it waits for as part of its normal

operation. When an event the b-thread waits for is selected, that b-thread first

checks whether said event makes it irrelevant. If so, the b-thread terminates.

Otherwise, the b-thread responds to the event (see Figure 3.1). We noted that

this was a reoccurring pattern, and thus decided to support it at the library

level. This support improves code readability by providing programmers with

a declarative way of labeling which events require termination, and which are

waited-for as part of the normal b-thread scenario.
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1 bp.register("monitor -1",function (){
2 while ( true ) {
3 var evt=bp.sync({
4 waitFor :[temp , done ]});
5 if ( evt === done ) return;
6 if ( evt.data.value < 220 ) {
7 bp.sync({ request:heaterOn });
8 }
9 }

10 });

1 bp.register("monitor -2",function (){
2 while ( true ) {
3 var evt=bp.sync({ waitFor:temp ,
4 interrupt:done });
5 if ( evt.data.value < 220 ) {
6 bp.sync({ request:heaterOn });
7 }
8 }
9 });

10 //

Figure 3.1: Interrupting events do not add expressive power to BP, but do
make the code more readable, by allowing programmers to declaratively label
events as a reason for b-thread termination. Both above b-threads monitor an
oven temperature and request that the heater is turned on when the tempera-
ture drops below 220 degrees. Both terminate when the baking is over (event
done). However, the b-thread on the right expresses the di↵erent semantics of
temp and done declaratively, whereas the b-thread on the left expresses them
using control-flow. This makes the b-thread on the right is more readable, and
less prone to programming mistakes.

Fork B-threads can call bp.fork, which, as in C, forks the b-thread into two

b-threads. Forking di↵ers from the situation where a b-thread registers a new

b-thread, in that fork also duplicates the call stack of the thread.

3.2.2 Software Architecture

For BPjs to analyze b-programs, it must view them as models or as data

structures. This does not prevent BPjs from executing programs. Rather, it

makes program execution another operation performed on a b-program. To

reflect this view, the BPjs design (shown in Figure 3.2), is divided into three

main packages:

model

This contains implementations of the main BP concepts. The BProgram

class captures the context in which b-threads run — it includes an event

selection algorithm (implemented using the EventSelectionStrategy

class), and an external event queue, through which host applications

can send data to b-threads. This package also contains the base class for
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events (called BEvent), and EventSet, which groups BEvents. EventSet

is not a data structure, but rather an abstract predicate. This allows

programmers to capture abstract concepts, such as “all events whose

name starts with X.” Perhaps surprisingly, this package does not contain

a BThread class. Instead, it has a class called BThreadSyncSnapshot,

which captures the state of a b-thread at a synchronization point. From

the BPjs point of view, an executing b-thread is a series of

BThreadSyncSnapshots. This design feature makes it easier to hypoth-

esize about b-program state-spaces.

execution

This contains classes for executing b-programs and monitoring their runs.

The BProgramRunner class, which executes BProgram instances and re-

ports back to the host application, resides in this package.

analysis

This contains classes for traversing and inspecting b-program state-spaces,

and reporting results. The ExecutionTrace class describes the possi-

bly infinite execution of a b-program, consisting of a series of b-program

states and the events that connect them. ExecutionTraceInspection is

the base class for inspecting these traces for violations. While

DfsBProgramVerifier is currently the only object that performs state-

space traversal, we expect other such objects to be added to this package

in the future.

Internally, BPjs uses Mozilla Rhino [85] to execute JavaScript code. Rhino

supports capturing continuations of running programs. Captured continua-

tions can be inspected and serialized. During model execution, BPjs uses this

feature to pause b-threads at synchronization points, and to allow a single

Java thread to execute multiple b-threads. During analysis, BPjs uses this

feature to traverse a b-program’s state-space as follows: When a b-program

arrives at a synchronization point, BPjs stores all its b-thread continuations.

BPjs then resumes the b-program multiple times — once for each event that
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is requested and not blocked at that point. This allows BPjs to analyze b-

programs directly, without the need to pass through an intermediate model

transformation phase.

BP specifies that at each synchronization point, the b-program should se-

lect an event that is requested and not blocked. This requirement gives BP

engines the freedom to choose a specific event at synchronization points where

more than a single event meets this criteria. Since many event selection al-

gorithms have been proposed (see Section 2.3), and since our objective in the

creation of BPjs was to construct a common platform for BP, we decided to

make the event selection algorithm pluggable. To this end, we have defined

the EventSelectionStrategy interface, with support for two methods. The

first method accepts a b-program at a synchronization point, and returns a set

of selectable events; the second accepts a set of selectable events, and chooses

a single event from them. This functional separation, between identifying the

events that can be selected and actually selecting an event, allows BPjs to

use the same event selection strategy object for both program analysis and

execution. BPjs ships with four strategies:

1. Random This strategy selects at random an event that is requested and

is not blocked.

2. Prioritized by B-Threads This strategy allows the programmer to assign

a priority to each b-thread. When presented with a set of events that

are requested and are not blocked, it selects the event with the highest

priority requested by the b-thread. B-thread priorities are not required

to be unique.

3. Prioritized by Synchronization Points B-threads may add an “irritation

factor” metadata to their synchronization statements. When presented

with a set of events that are requested and not blocked, this strategy will

select an event at random from the subset of events that are requested,

not blocked, and whose requesting synchronization statement has the

maximal irritation factor.
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Figure 3.2: Main BPjs packages, classes, and their inter-relationship. The
model package is used to describe a b-program. Model execution is performed
using the execution package. The analysis package is used to analyze b-
programs (e.g., for verification). Host applications use BPjs by instantiating a
BProgram object, and passing it either to a BProgramRunner for execution or
to a DfsBProgramVerifier for analysis. Client code can alter execution and
analysis behavior by providing custom implementations of interfaces such as
EventSelectionStrategy (which implements the event selection algorithm),
or ExecutionTraceInspection (for detecting violations during analysis). De-
tailed class and package documentation is available at [15].
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4. Ordered Events A b-thread can request multiple events by passing an

event array in its synchronization statement. While other strategies

treat this array as a set of events, this strategy treats it as a priority

queue. Thus, for each b-thread, it will only consider selecting the first

requested and not blocked event.

Students and researchers working with BPjs have developed other strate-

gies. Examples include a round-robin strategy that attempts to be fair with

regard to b-threads wait times; a strategy which sets priority according to

event type; and a few strategies based on machine learning.

3.2.3 Software Functionalities

BPjs can be used in two manners: as a BP runtime embedded in a host Java

program, or as a tool for b-program analysis (see Figure 3.3). When used as a

runtime (see Listing 3.1), the host application creates a BProgram object, and

provides it with JavaScript source code. It then uses a BProgramRunner to exe-

cute the BProgram instance. The host application sends data to the b-program

by enqueueing events in the b-program’s external event queue. It reads data

from the b-program by listening to events selected by the b-program, through

a listener interface provided by the BProgramRunner.

Host applications can alter b-program behavior by providing a custom

event selection strategy, or by directly manipulating the b-program’s global

scope. Another way of altering the behavior of a b-program is by adding

additional b-threads to its source code — BProgram supports this approach

too, through methods that allow for appending and prepending code.

When using BPjs as an analysis/verification library (see Listing 3.2), the

host application begins by creating a BProgram instance, in the same way as

in the model execution use case. Depending on the properties being verified,

the host may add additional b-threads to detect violating states, simulate an

environment, or limit search space. The host then passes the b-program to a

DfsBProgramVerifier for verification. The verifier traverses the b-program’s

state space by executing the b-program, capturing a continuation of its b-
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Listing 3.1: BPjs used as a model execution engine. The host application
instantiates a BProgram object, and passes it to a BProgramRunner for exe-
cution. The host recieves updates about the b-program’s progress through a
listener interface, and can pass data to it by enqueuing events in its external
event queue. Prior to starting program execution, the host can write data
directly to the b-program’s global scope, and can specify the event selection
strategy to be used.
1 BProgram bprog = new StringBProgram(source );
2 bprog.setEventSelectionStrategy(new SomeCustomSelectionStrategy ());
3 bprog.putInGlobalScope("answer" ,42);
4 bprog.appendSource(createExtraBThreads (...));
5 BProgramRunner rnr = new BProgramRunner(bprog );
6 rnr.addListener(new BProgramRunnerListener (){
7 @Override
8 public void eventSelected(BProgram bp, BEvent theEvent ){
9 // handle selected event

10 }
11 // additional b-program lifecycle handling
12 });
13 rnr.run ();
14 ...
15 bprog.enqueueExternalEvent( new BEvent("data from host") );

threads at each synchronization point. By invoking these continuations mul-

tiple times — each time with a di↵erent event that was requested and not

blocked — the verifier examines all possible advancement options available to

the b-program at each of its synchronization points.

Because the state-space is a connected graph (and not a tree), a b-program

can reach a certain state through multiple traces. Thus, during analysis, when

BPjs arrives at a state, it needs to check whether it has already visited this

state. To this end, BPjs uses a visited state storage object, implementing the

VisitedStateStore interface. BPjs ships with three state storage implemen-

tations: a full state storage, a storage that uses a hash value of stored states,

and a “forgetful” visited state storage, useful for programs whose state space

is known to be a tree.
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Listing 3.2: BPjs used as a model analysis engine. The host application in-
stantiates a BProgram object and passes it to a DfsBProgramVerifier for
analysis. The host receives updates on the progress of the analysis through a
listener interface. If a violation is found, the host is informed, giving it the
option to decide whether the analysis should continue or not. Before starting
the analysis, the host can write data directly to the b-program’s global scope,
specifying which event selection strategy should be used. The host can adjust
various analysis aspects, such as the maximal depth of the DFS traversal, the
set of inspections used, and how visited states are stored.
1 BProgram bprog = new StringBProgram(source );
2 bprog.setEventSelectionStrategy(new SomeCustomSelectionStrategy ());
3 bprog.putInGlobalScope("answer" ,42);
4 bprog.prependSource(createExtraBThreads (...));
5 DfsBProgramVerifier vfr = new DfsBProgramVerifier ();
6 vfr.setMaxTraceLength (1024);
7 vfr.setVisitedStateStore(new BThreadSnapshotVisitedStateStore ());
8 vfr.addInspection(ExecutionTraceInspections.FAILED_ASSERTIONS );
9 vfr.setProgressListener(new DfsBProgramVerifier.ProgressListener (){

10 @Override
11 public boolean violationFound(Violation vltn , DfsBProgramVerifier vfr){
12 // handle violation
13 return true; // true continues the analysis; false terminates it.
14 }
15 // additional analysis lifecycle handling
16 });
17 final VerificationResult res = vfr.verify(bprog );
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Figure 3.3: BPjs used as a b-program runtime engine (left) and as a analysis
engine (right). Dark blocks are closed for modification (except by means of
altering their code), and light blocks can be supplied by the client code in
order to alter system behavior. BPjs supplies reasonable default implemen-
tations for all light blocks, except for the b-program itself. The b-program
(b-threads supplied by the programmer) interacts with its BProgram infras-
tructure using bp, an interface object placed in the application scope by BPjs.
Client code can specify which event selection strategy the BProgram will use
for selecting events requested by the b-program threads. The b-program and
the BProgram supporting it are used both during execution and analysis. For
program execution, the host application can monitor the b-program using a
listener interface. It can send data to the b-program by queueing events into
its external event queue. During analysis, the host application can specify
which trace inspections should be executed, and how visited states should be
stored. The host application monitors the analysis progress through a listener
interface, similar to the execution use-case. When a violation is found, the host
application is informed through the listener interface, and can decide whether
analysis should continue or not.
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Listing 3.3: A “hello world” program, consisting of three b-threads.
1 var HELLO = bp.Event("hello");
2 var WORLD = bp.Event("world");
3

4 bp.registerBThread("bt -hi", function (){
5 bp.sync({ request:HELLO });
6 });
7 bp.registerBThread("bt -world",function (){
8 bp.sync({ request:WORLD });
9 });

10 bp.registerBThread("hello world Patch", function (){
11 bp.sync({ waitFor:HELLO , block:WORLD });
12 });

3.3 Illustrative Examples

This section demonstrates the use of BPjs as an embedded BP runtime and as

a model checker. We will begin by revisiting the “hello world” program from

Section 2.1.1 — this time focusing on the BPjs-specific aspects. After this, we

will present a more complex example, also using Section 3.4, to evaluate BPjs’

performance.

3.3.1 Hello Revisited World

The code in Listing 3.3 shows the complete program constructed in Sec-

tion 2.1.1. To recap: the code begins with the definitions of two events, and

then registers three b-threads. BPjs programs are written using JavaScript,

with a bp object added to their global scope. The bp object is the proxy for all

actions related to behavioral programming. Here, it is used for event definition,

b-thread registration, and synchronization. B-threads synchronize by calling

bp.sync. This method accepts two arguments: a synchronization statement

and an optional synchronization parameter, as discussed above. Synchroniza-

tion statements are JavaScript objects with fields for requested events (zero,

one, or event array), and waited-for, blocked, and interrupting event sets.

It should be noted that the code for “hello world” does not refer to any b-

program. In particular, no b-program is ever instantiated or started. BPjs does

this outside the program’s code, which assumes that a single, global b-program
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Figure 3.4: Execution cycle of a b-program under BPjs. Execution begins with
BPjs running the JavaScript source as a regular script (left). During this initial
execution, the code registers JavaScript functions and b-threads. When the
initial execution is completed, BPjs begins to execute the b-threads through
the regular BP-cycle of concurrent b-thread progression, synchronization, and
event selection (right).

exists. BPjs executes a program by first running its JavaScript file(s) to com-

pletion, and collecting b-threads registered by calls to bp.registerBThread

during this initial run. It then runs the b-threads concurrently, which starts

the classic BP cycle. Figure 3.4 shows this process.

The decision to have BP code assume the existence of a global b-program

simplifies the code, which is an important language design goal. It does not

prevent system designers from using multiple b-programs in a system, since

this assumption is only valid for the JavaScript code, and not the for host Java

code. Thus, system designers are free to concurrently run multiple b-programs

at the host level, using multiple BProgramRunners.

3.3.2 A Robot in a House

We now turn to a more complex example, demonstrating how BPjs can be

used for execution and analysis in a model-driven engineering approach. To

this end, we present an application for visually simulating the movement of

a robot in a house. For this demonstration, we defined a house using a floor

plan consisting of a two-dimensional array of cells. There are two types of
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Figure 3.5: Screenshots of the robot-in-a-house simulation application, built
using a model-driven engineering approach, with BPjs as the model runtime
and analysis engine. Clockwise, from top left: a model, described using the
floor plan description language presented in Subsection 3.3.2; a running simu-
lation; a detected safety violation (robot in trap); a detected liveness violation
(robot stuck in a hot area indefinitely).

cells: walls and spaces. In the floor plan, space cells are of three sub-types:

regular, hot, and trap. Our objective is to ensure that the robot will never

enter a trap cell, and that it should not stay on hot cells indefinitely (more

formally: a robot should visit non-hot cells infinitely often).

The application shown in Figure 3.5 allows users to create a floor plan of a

house, using a domain-specific language. With a floor plan, the application can

simulate robot movement, and detect whether the robot will fall into a trap or

stay in a hot area indefinitely. This application was designed using the model-

driven engineering approach. With this approach, business logic is described

and articulated through a model, rather than through standard imperative

code. Compared to code, which focuses on computation, models o↵er a higher

level of abstraction, closer to the problem domain. Here, the model is a b-

program created by parsing the floor plan. The host application (written in

Java) uses BPjs to execute or analyze the house model. All simulation decisions

are made by the model — the host is only responsible for the creation and
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presentation of the model.

Our floor plan description language is based on ASCII art drawings. Some

characters have unique semantics: spaces denote space cells, t denotes trap

cells, and h denote a hot cell. The robot’s starting point is denoted by s —

otherwise a regular space cell. All other characters denote walls. Generating a

b-program model for a house described in this language amounts to traversing

the floor plan ASCII drawing, adding appropriate b-threads for each of its

characters. Listing 3.4 shows the b-thread templates for the generation of b-

threads for various space cell types. The templates are parameterized with

cell coordinates.

We introduced this approach, where b-threads are used to define the exe-

cutable semantics of formal language constructs, in [9]. We explore this further

in 5.

The state-space of a “robot in a house” b-program is shown in Figure 3.6.

The floor plan used to generate this b-program is the same as the plan used

for the simulations in Figure 3.5.

Our model generates a random robot walk in a house as follows: individual

space cells repeatedly wait for an entry event to any of their neighboring cells

(adjacentCellEntry event set in Listing 3.4). When such entry occurs, the

space cell requests an entry event with its own coordinates. While doing so, it

also waits for any other entrance — in e↵ect, making the space cell in question

cancel the request if the robot chooses to enter another cell. The robot walk

is started by a Start b-thread, requesting an entry event to a specific cell.

A trap cell is a space cell. That is, a Space b-thread with its coordinates

is present in the b-program. In addition to this b-thread, a Trap b-thread

with its coordinates is also present. The Trap b-thread announces that the

robot was trapped immediately after the robot entered its cell, by requesting

the ROBOT TRAPPED EVENT and blocking all other events. This means that

ROBOT TRAPPED EVENT will be the only selectable event at the synchronization

point immediately after the robot enters the trap.

Like trap cells, hot cells are space cells with an added b-thread. With these

cells, a Hot b-thread waits for an entry event to the cell it represents. When
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Listing 3.4: Code for generating b-threads for the house simulation program
described in Subsection 3.3.2. Rows 1-13 contain defintions of events and
event sets that are used by simulation b-threads. The four addXXX functions,
parametrized with cell coordinates, add b-threads for the various types of cells
to the b-program. In order to create a b-program that simulates a robot
moving through a specific house, the floor plan parser (not shown, available
in [6]) traverses an ASCII drawing of said floor plan, and invokes addXXX
functions according to the character it encounters.
1 function enterEvent(c,r) {
2 return bp.Event("Enter (" + c + "," + r + ")");
3 }
4

5 function adjacentCellEntries(col , row) {
6 return [enterEvent(col + 1, row), enterEvent(col - 1, row),
7 enterEvent(col , row + 1), enterEvent(col , row - 1)];
8 }
9

10 var anyEntrance = bp.EventSet("AnyEntrance", function(evt){
11 return evt.name.indexOf("Enter")===0;});
12 var cellWait = [anyEntrance , ROBOT_TRAPPED_EVENT ];
13

14 function addSpaceCell( col , row ) {
15 bp.registerBThread("Space(c:"+col+" r:"+row+")", function (){
16 while ( true ) {
17 bp.sync({ waitFor:adjacentCellEntries(col , row) });
18 bp.sync({ request:enterEvent(col , row),
19 waitFor:cellWait });
20 }});
21 }
22

23 function addTrapCell(col , row) {
24 bp.registerBThread("Trap(c:"+col+" r:"+row+")", function (){
25 while ( true ) {
26 bp.sync({ waitFor:enterEvent(col , row) });
27 bp.sync({ request:ROBOT_TRAPPED_EVENT ,
28 block:bp.allExcept( ROBOT_TRAPPED_EVENT ) });
29 }});
30 }
31

32 function addStartCell(col , row) {
33 bp.registerBThread("Starter(c:"+col+" r:"+row+")", function () {
34 bp.sync({ request:enterEvent(col ,row) });
35 });
36 }
37

38 function addHotCell( col , row ) {
39 bp.registerBThread("Hot(c:"+col+" r:"+row+")", function (){
40 while ( true ) {
41 bp.sync({ waitFor:enterEvent(col , row) });
42 bp.hot(true).sync({ waitFor:cellWait });
43 }});
44 }
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such an event is selected, it then waits for an entrance to another cell, using a

hot synchronization point. As discussed in Subsection 3.2.1, hot synchroniza-

tion points indicate to the BPjs analyzer that the submitting b-thread must

eventually advance beyond said point. In order for this to happen, an entry

event to another cell must eventually be selected. This means that the robot

must, at some point, leave the hot cell.

If a floor plan has two adjacent hot cells, a robot may leave one hot cell

and immediately enter another. In this case, a di↵erent Hot b-thread will

become hot at the next synchronization point. In the model presented here,

a run in which a robot moves in an infinite loop of hot cells will violate the

requirement that a robot must eventually enter a non-hot cell. Thus, we deploy

an execution trace inspector to look for cycles in the program’s state-space

where, in each state, there is at least one hot b-thread. Other inspectors may

look for cycles where a single b-thread is hot throughout the cycle, ignoring

the overall picture.

Model Execution In order to simulate the robot’s movement around the

house, the Java host application uses a BProgramRunner, in a manner similar

to the steps presented in Listing 3.1. The host starts by composing b-program

source code from the floor plan parser and the floor plan created by the user.

It then creates a BProgram instance using the generated code, and passes this

to an instance of BProgramRunner. It then starts the runner, and listens to

events selected by the b-program. When an Enter(x,y) event is selected, the

host updates the displayed floor plan by moving the robot icon to cell (x, y).

When the user clicks a floor plan cell, the host application enqueues an entry

event to that cell in the b-program’s external event queue. Chapter 6 presents

an in-depth assessment of the use of BPjs as an embedded model-execution

engine.

Model Verification A house model is verified against two formal require-

ments: That the robot never falls into a trap, and that the robot will not get

stuck in a hot area indefinitely. The host application uses BPjs to verify the
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Listing 3.5: A b-thread capturing the requirement “A robot should not fall
into a trap”.
1 bp.registerBThread("Robot not falling into trap", function (){
2 bp.sync({ waitFor:ROBOT_TRAPPED_EVENT });
3 bp.ASSERT(false ,"The robot fell into the trap.");
4 });

model, in a manner similar to the process described in Listing 3.2. The host

starts by generating a BProgram instance, as in the execution use-case. In ad-

dition to the code used for execution, the application adds a b-thread that will

cause a false assertion when the ROBOT TRAPPED EVENT is selected (Listing 3.5).

The host proceeds to instantiate a DfsBProgramVerifier object, and passes

the newly generated BProgram object to it. The host then specifies the rele-

vant inspections for the verifier to use (one looking for failed assertions, and

another looking for hot cycles in the b-program’s state space). It then starts

the verification process, and receives in return a verification result from the

verifier. If a violation is identified (e.g. the robot enters a trap), the verifica-

tion result will contain a counter example leading to the discovered violating

state. In this case, the host application will display the route of the robot

that led to the violation, by reconstructing it from the events in the counter

example execution trace. Chapter 4 expands on b-program verification.

The second requirement, “a robot should visit non-hot cells infinitely of-

ten”, is a liveness property [3]. As such, it can only be violated by infinite

runs. BPjs detects these violations by finding hot cycles in b-program state

graphs. To the best of our knowledge, BPjs is the first tool able to detect

liveness violations in b-programs. The idea was sketched in [46], but never

realized. Furthermore, the modular design of BPjs allows it to distinguish

between cycles in which a single b-thread is indefinitely hot, and cycles where

the b-program is indefinitely hot, but each of its b-threads is non-hot infinitely

often. These cases represent di↵erent types of violations. To the best of our

knowledge, this distinction — further discussed in Subsection 4.4.3 — is new.
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Figure 3.6: State space of a robot in a house simulation b-program, simulating
the house shown in Figure 3.5. Nodes are synchronization points, edges are
events. Hot synchronization points are marked with a thick orange line. Vi-
olating states, were a b-thread declared a failed assertion, are marked with a
hexagonal shape. This graph was automatically generated by a tool that uses
BPjs (see [6]) and later adjusted manually to fit this page.
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3.4 Evaluation

This section presents evaluations of BPjs, covering performance and usability

aspects. In particular, we evaluate:

1. How performant is BPjs as a runtime engine?

2. How performant is BPjs as a model analysis tool?

3. How intuitive is BPjs for programmers used to ordinary programming?

3.4.1 Performance Evaluation

We evaluated BPjs’ performance separately with regard to each of its usages:

as a model analysis tool, and an execution engine. For the measurements

presented, we used the robot movement simulation b-program presented in

Subsection 3.3.2. We used square floor plans with no walls; a single start cell

(located at the top left corner of the floor plan); a single trap cell (bottom

right), and two hot cells (bottom left and top right). We choose these floor

plans as a benchmark case, since the state-space of b-programs generated for

this type of floor plan contains the highest state and edge counts for the given

floor plan size. Thus, BPjs will work harder in this orientation than with a

floor plan with similar dimensions, but with walls. Additionally, this type of

floor plan lends itself to parameterization, an important trait when testing the

impact of input size on performance. Last but not least, the state space of

these b-programs — where most states have an out-degree of about 4 — is, in

our experience, a typical case.

Each of the measurements were repeated 10 times and averaged. Unless

otherwise noted, the measurements were taken on a 2.9 GHz Intel Core i9

MacBook Pro with 32GB RAM, of which 16GB was allocated to Java. The

JVM used was OpenJDK 18.9 (Java 11).

To evaluate the performance of BPjs as a verification and analysis engine,

we measured the time required to fully traverse the state space of a house

simulation b-program. We used di↵erent floor plan sizes, and two types of
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Plan Size States Edges
Time (msec)

Full Hash
5 ⇥ 5 27 80 2,256 ±105 2,205 ±112
7 ⇥ 7 51 168 10,289 ±440 8,193 ±107

10 ⇥ 10 102 360 37,467 ±450 33,734 ±468
15 ⇥ 15 227 840 187,629 ±10,612 184,289 ±5,712

100 ⇥ 100 402 1520 658,478 ±9,201 640,358 ±7,269

Table 3.1: Average time required for BPjs to fully traverse the state space
of a robot-in-a-house simulation b-program. Measurements were taken using
OpenJDK 18.9 (Java 11), on a 2.9 GHz MacBook Pro. Each measurement
was repeated 10 times.

visited state storage: storage that stores the states as objects, and storage

that uses hash codes. The results are listed in Table 3.1, and analyzed in

Figure 3.7. Verification times for the two storage types are similar — the hash-

based storage performed slightly better. This is due to the fact that full state

storage uses hash-based optimizations to quickly di↵erentiate between non-

matching states, and only uses full-state comparison to resolve possible hash

conflicts. The slight di↵erence in favor of the hash-based storage mostly reflects

the fact that it did not require as much e↵ort from the memory management

sub-system.

There is a near-constant ratio (1.06± 0.07 full, 0.982± 0.46 hash) between

the duration required to fully traverse the state space of a robot-in-a-house

program, and the state space’s |states|⇥ |edges| metric. This can help predict

verification times when state and edge counts are known.

To compare BPjs’ verification performance against other verification alter-

natives, we implemented a similar robot-in-a-house program, using a modified

version of BPJ [6], verifying it with NASA’s JavaPathFinder (JPF) [57]. BPJ

needed to be modified in order to support a random-based event selection

strategy1. JPF is a versatile modular Java virtual machine, aimed at program

analysis and verification. We used the same machine and memory allowance,

but were obliged to use an older version of Java (1.8.0 201), as JPF cannot

1
This is another example demonstrating the advantages of BPjs’ modular approach.
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Figure 3.7: Ratio between the duration required for a full state space traversal
and various state space graph metrics. Ratio between traversal duration and
state count, edge count, or their sum, increases polynomially with the size of
the state space. However, the ratio between traversal duration and |states|⇥
|edges| remains constant as the state space grows. The two types of visited
state storages (hashed and full) behave similarly.
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Plan Size B-threads BPJ (msec) BPjs (msec)
5 ⇥ 5 25 65.2 ±6 238.4 ±72

10 ⇥ 10 100 89.6 ±12 403.5 ±74
20 ⇥ 20 400 189.4 ±17 1,094.7 ±91
50 ⇥ 50 2,500 2031.2 ±20 8,461.3 ±102

100 ⇥ 100 10,000 Out of memory 12,605.7 ±110

Table 3.2: Average time required for a robot to take 1000 steps in a house
simulation (milliseconds). Measurements were taken using OpenJDK 18.9
(Java 11), on a 2.9 GHz MacBook Pro with 16G of RAM (out of 32) allocated
to Java. Each measurement was repeated 10 times.

run on Java 11. To traverse the program state space, we used the core JPF

system, which verifies a program by running all of its possible thread interleav-

ing combinations, and enumerating the overall random decision points. Thus,

JPF’s view of a b-program’s state space is much larger than BPjs’: BPjs only

counts synchronization points as states, whereas JPF looks at thread inter-

leaving options and calls to java.util.Random. Not surprisingly, the JPF

verification process was much longer, taking 85 seconds to verify a 1⇥1 floor

plan (containing 3 b-threads), visiting 438,568 states. While trying to verify

a 2⇥2 floor plan (6 b-threads), JPF ran out of memory after 8:31 minutes.

We explored two other alternatives for verification, and found that both

were not viable. BPMC, a model checker based on BPJ [46], does not support

Java versions later than Java 5, which was released in 2004 and has not updated

since 2009. Thus, we do not believe that it can be considered as a practical tool.

Our attempts to verify the BPjs robot-in-a-house program using JPF failed

for technical reasons, as JPF does not support some of the Java constructs

used by BPjs.

To evaluate BPjs as a runtime engine, we measured the time required for a

robot to perform 1000 moves in a house simulation program. For this test, we

removed the trap cell, to ensure that runs were not terminated prematurely.

We repeated the experiment with a range of floor plan sizes, and compared the

results against a similar b-program executed using BPJ. The results (shown

in Table 3.2) show that BPJ is about 5 times faster than BPjs. This is to
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be expected, as Java is a compiled language whilst JavaScript is interpreted.

Additionally, Rhino cannot use any optimizations while working with continua-

tions, which forces BPjs to turn o↵ all runtime optimizations during execution.

However, because BPjs can run multiple b-threads using the same OS thread,

it can execute b-programs with a larger concurrent b-thread count. When it

attempted to run a b-program generated for a 100⇥100 floor plan, containing

around 10,000 b-threads, BPJ exhausted its 16G memory allowance; BPjs,

however, was able to run the program to completion.

3.4.2 Usage Evaluation

BPjs has been used in various projects and experiments, both by us and by

other research students. The following research studies report on some of these

usages. In [9], we used BPjs to execute live sequence charts, after translating

these charts to b-programs. This allowed us to support variants of the LSC

language through model transformation. In [35], we used BPjs in a model-

driven solution for a leader-follower challenge presented by the MDETools

2018 workshop. Participants were required to develop control software for a

rover, such that it could follow another rover at a safe distance. To this end,

we wrapped a model written in BPjs in a traditional Java application. The

Java layers were responsible for passing telemetry and sensor data to the BPjs

model, and for actuating the simulated environment on the basis of selected

events. The BPjs model was responsible for navigation decisions, such as

acceleration and turning. In [5], we used a similar approach for implementing

the on-board control software for a cube satellite. In the two latter works,

we used BPjs’ analysis features to verify that the developed models complied

with a set of formal requirements.

Another tool that uses BPjs’ analysis features is StateSpaceMapper (avail-

able at [6]). StateSpaceMapper is a utility program for diagramming the state-

spaces of b-programs. Figures 2.2 and 3.6 were generated using this tool.

As a teaching platform, we have used BPjs in an undergraduate class for

computer science (CS) and information systems engineering (ISE) students.
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Students used BPjs to implement a number of projects, including a web-based

PacMan game, a Blockly-based interface for behavioral programming, and the

implementation of strategies in computer games. A student survey at the end

of the term showed that the students found the material interesting (4.5/5)

and relevant (4.5/5).

In the course feedback, a 3rd year CS student wrote: “the whole idea of this

system is very interesting for me, because it is actually a di↵erent approach

to problems than the approach we, as students in CS, are used to. The way

the BP engine works . . . might be strange in the beginning, but when I got

into it - it looked really logical and obvious”. Another student commented:

“Using the decision engine based on request, wait-for, and block, was initially

hard to understand, but after a few examples I was able to understand it and

enjoyed using it. I found this way of thinking interesting and challenging”.

One student concluded his feedback by saying: “Finally, I can say that this

system is revolutionary in the way it sees and solves problems, but at the same

time is really friendly to the user.”

BPjs was used as the model core of a graphical, web-based rule engine

developed by a team of students and researchers during a 28-hour hackathon.

The system went on to win first prize2.

In order to determine whether practitioners similarly find BPjs interesting

and innovative, we submitted a talk about it to Devoxx Belgium 20183. De-

voxx is a community-led developer conference, focused on the Java community.

For the 2018 conference, Devoxx Belgium received 1600 talk submissions, of

which 167 were selected by the content committee. Our talk, titled “Rethink-

ing Software Systems: A friendly introduction to Behavioral Programming”

was one of the talks accepted. This supports our view that BP is of interest

to practitionaires, and that BPjs may be a platform capable of sparking col-

laborations between academia and practicing software engineers. We received

additional evidence supporting this presumption in the week before the con-

ference, when Java developer at JUVO listed our talk as one of his 3 “must

2
First place in HackBGU, https://bit.ly/2riUjB0

3
https://devoxx.be
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see” talks (out of a total of 217)4.

The talk was initially scheduled to take place in one of the smaller rooms.

However, following feedback from the Devoxx conference website — which

allows conference goers to indicate anticipated and/or popular talk abstracts

— our talk was moved to a larger room with a capacity of 650 seats. We

could not determine the exact attendance, but the room was quite full (see

Figure 3.8).

The talk itself was rated 73 out of 217 by Devoxx attendees5. As of March

23 2019, its YouTube video had been viewed 787 times, making it the 95th

most-viewed of the 212 videos available on Devoxx 2018’s YouTube channel.

Currently, however, we are not aware of any use of BPjs outside academia6.

While our data from Devoxx 2018 is anecdotal, it does indicate that prac-

titioners are interested in BP and in BPjs, and are willing to invest valuable

conference time to learn about them.

3.4.3 Evaluation Summary

In summary, we can say that BPjs is reasonably performant, both as a runtime

engine and as a model analysis tool. While it is not as fast as BPJ, which enjoys

Java’s compiled, statically typed nature, its execution time is still reasonable,

and its lower memory requirements allow it to run b-programs with more b-

threads than BPJ. As for intuitiveness for programmers, we have seen that

computer science and software engineering students can use BPjs for creating

non-trivial systems, with little or no help.

Threats to Validity. Our performance tests included a large amount of

b-threads sharing the same code, and had about 4 selectable events at each

synchronization point. Additionally, the waitFor and block event sets did

not contain complex logic. BPjs may perform di↵erently for B-program whose

4
https://www.juvo.be/blog/devoxx-2018-juvos-must-sees

5
https://www.linkedin.com/pulse/top-100-rated-talks-from-devoxx-belgium-2018-

stephan-janssen/
6
The video did encourage a Kotlin developer to download and try the Kotlin version of

ScenarioTools [36], which supports BP through a textual version of LSC.
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Figure 3.8: BPjs talk at Devoxx Belgium 2018. Devoxx is a developer-
led conference focusing on JVM languages. The fact that a talk about
BPjs was accepted and well attended supports our view that BPjs, and BP
in general, are ready for non-academic use. Photo: James Birnie’s blog
(http://www.jamesbirnie.com/2018/11/devoxx-belgium-and-two-talks.html).

b-threads vary a lot or that require complex event filtering logic. Regard-

ing intuitiveness evaluation, the main threat to validity is that we have used

university students. Students may be more open to new ideas, as the have

less experience than professionals, and have recent experience in learning new

paradigms (e.g. because of taking a Functional Programming class). Thus,

our intuitiveness evaluations might be positively biased.

3.4.4 Quality Assurance

BPjs is a complex software system, and some parts of it are tricky to imple-

ment correctly. To ensure its quality, we use unit tests, in combination with

continuous integration and code coverage analysis. At the time of this writ-

ing, BPjs’ code repository contains 198 unit tests, which cover 84.78% of BPjs’

code7. Developers are encouraged to run these tests on their machines during

development prior to committing the code to the central repository. Quality

assurance, however, does not rely on developer’s discipline, but rather on con-

7
Detailed report is available at https://coveralls.io/builds/22502875
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tinuous integration. Whenever new code is pushed to the central repository, a

continuous integration server builds the library from its updated sources, and

runs all unit tests available in code. If any of these tests fail, the developer is

automatically informed.

A similar process is used to ensure that BPjs’ on-line documentation is

up-to-date. BPjs’ high-level documentation is available in a web site, which

includes tutorials, examples, and other similar resources8. The source code for

this website is stored with BPjs’ source code. When new code is pushed to the

central code repository, the documentation server is informed, and re-builds

the documentation website.

BPjs’ low-level documentation, which covers its packages, classes and meth-

ods, is created using Javadoc9. When a new version of BPjs is published to

Maven Central, a new version of its low-level documentation is automatically

made available on-line.

This level of automation was not possible without o↵erings provided for

free, by commercial companies that support open-source software. We are

grateful for the services of GitHub (central code repository), TravisCI (con-

tinuous integration), Coveralls.io (code coverage analysis), ReadTheDocs.io

(high-level documentation publishing), Javadoc.io (low-level documentation

publishing) and Sonatype (Maven Central binary repository).

3.5 Conclusions

This chapter presented BPjs, a platform for developing software systems based

on the Behavioral Programming paradigm. Unlike previous BP systems, which

were designed to serve specific goals, BPjs aims to be an open platform on

which advanced BP-based tools can be created. BPjs views b-programs as data

structures, and can both analyze and execute them. We used it to implement

the first BP verifier capable of identifying liveness violations. BPjs supports

features that were not available in previous BP systems; it also allows for

8
See https://bpjs.readthedocs.io/en/latest/

9
See https://docs.oracle.com/en/java/javase/13/javadoc/javadoc.html
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the embedding of b-programs in traditional software systems by supporting

a well-defined communication protocol, another feature which was hitherto

unavailable. BPjs is an open-source project, available at GitHub10. On-line

documentation, reference, and tutorials, are available at its documentation

site11.

BPjs can be improved in a number of ways, which we leave to future work

(by us and others). These include better performance (especially during verifi-

cation), lower memory requirements, new event selection strategies, improved

debugging and logging tools, and a heuristics-driven verifier. Porting parts of

the substantial body of work already developed using other BP tools will also

be a worthwhile undertaking.

Software packages such as ROS [93] (robotics), the R language [94] (statis-

tics), and Zelig [21, 61] (statistic modeling) provide a platform for tool cre-

ation, and a common infrastructures for sharing ideas and reusing code. They

accelerate research and facilitate its dissemination not only in academia, but

also across the campus fences and with industry, schools, and hobbyists. BPjs

follows these packages by providing a common environment for Behavioral

Programming, both extensible and easy to use. We hope that in due course

BPjs will become a boring part of BP research — a reliable software package

that helps make creating the exciting parts easier.

10https://github.com/bThink-BGU/BPjs
11https://bpjs.readthedocs.io
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Chapter 4

BP, Verification, and Pancakes

One strong point of BP — and SBP in general — is the fact that programs

created with these paradigms are amenable to verification. Thus, BP can po-

tentially be used to create highly reliable systems, whose correctness would not

merely be anecdotally demonstrable through testing, but could also formally

proven by verification. However, as is to be expected, there is a gap between

identifying this potential and actually realizing it.

In this chapter, we present a number of methods for verifying the safety

and liveness properties of behavioral programs. Verification is performed using

direct code execution, with no model transformations. Our extensible analysis

method is based on traversing the state-space of an analyzed b-program, and

finding violating states and “hot” cycles. We identify and discuss two types of

liveness violations; a case where it makes sense to talk about liveness violations

in the context of finite runs; and the fundamental di↵erences between liveness

and safety properties in the context of Behavioral Programming. These meth-

ods are supported by BPjs, our BP execution and analysis platform, presented

at Chapter 3.

This work is informed by previous attempts to verify programs written in

BP and/or SBP (see Section 4.5). The direct formal verification of b-programs

was hitherto limited to safety properties. The verification of liveness proper-

ties, outlined briefly in [46], has never been realized. The work presented here

can verify both types of properties, and can do so using direct verification. Ad-
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ditionally, the work presented here allows dynamic b-thread additions, which

were not supported in [46].

An alternative approach to direct verification is model transformation.

Under this approach, a b-program is analysed using a three-stage process.

First, it is translated to the input language of an existing model checker (e.g.

SPIN [60]). Second, the model checker is used to perform an analysis. Third,

the analysis result is translated back to b-program terms. This approach was

taken by multiple previous works, both for BP [42] and for LSC [45, 55, 77, 78].

The main advantage of model transformation is the ability to build upon an

existing tool, and, given a correct bidirectional translation, use symbolic model

checking [18, 91]. The main disadvantages are the need to develop and im-

plement a bidirectional translation algorithm between the source b-program

and the model language, which often introduces “fine print” regarding what

features of the language can be analysed, and the requirement to perform the

analysis using model checker terms. Direct verification, on the other hand,

does not require translation, and allows analysis engines to work using BP

terms, which makes it easier to work with and extend them. Similar consider-

ations led [46] to use direct verification as well.

Our use of a modular design allows new types of verifications and analyses

to be implemented without the need to negotiate the complex technicalities

involved in creating a verification engine. This design approach facilitates

research, and indeed made it possible for us to identify the two violation types

described above.

The rest of this chapter is organized as follows. Section 4.1 presents a

running example of a model-driven system based around a behavioral model.

Section 4.2 presents a method for declaring the liveness properties of behavioral

programs. Section 4.4 discusses the verification of behavioral programs, using

examples from Sections 4.1 and 4.2. Section 3.1 discusses related work, and

Section 4.6 presents our conclusions.
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4.1 The Pancake Maker

Let us consider a mixer for preparing pancake batter, controlled by a b-

program (Figure 4.1). In this example, we will employ a few variants of this

system to demonstrate how behavioral programs can be verified, and will dis-

cuss their liveness and safety properties. In order to allow for a comparative

discussion, this section presents the mixer variants; Section 4.4 discusses how

these can be verified. The code used in this section is available in the chapter’s

code appendix [7].

Pancake batter is made out of two mixtures: dry (flour, baking soda, salt)

and wet (eggs, buttermilk, vanilla extract). Our batter mixer has a mixing

bowl, and two containers equipped with computer-controlled valves, one for

each type of mixture. The mixer is controlled by a program built using a

model-driven approach; control decisions are made by a b-program, serving as

a model. A traditional program (“host”) wraps the model, feeds it with exter-

nal inputs, and responds to its decisions by actuating the mixer’s components.

Specifically for a BP model, the host program translates external inputs to

events, enqueuing them in the b-program’s external event queue. The model

publishes its decisions by selecting events. The host b-program listens to the

model’s event selection, and acts accordingly. In this example, when the b-

program selects an ADD_DRY event, the wrapping program pours a single dose

of dry mixture into the mixing bowl; when the b-program selects an ADD_WET

event, the wrapping program pours a single dose of wet mixture into the bowl.

The proposed batter mixer design has two notable properties. First, all

of the decisions are made by the b-program, serving as a model. The host

program’s logic, on the other hand, is trivial. Thus, this paper can focus on

the verification and correctness of the b-program, without sacrificing system

correctness. Second, the b-program is not aware of the specific events that

the host program reacts to. From an engineering perspective, this separation

allows for di↵erent machines to use the same model, and vice-versa. However,

it also means that the developers of the model and of the host program must

agree on an interface, in the form of a set of events and their semantics.
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Figure 4.1: A computer-controlled pancake batter mixer, where mixture flow to
the mixing bowl is controlled by a b-program. The host program, a traditional
Java program, converts its inputs to events and feeds them to the model for
processing. Additionally, the host program translates event selections made
by the model to real-world actions.

Listing 4.1: Naive b-program for preparing batter for 5 pancakes. Consists of
two b-threads, each requesting the addition of 5 doses of ingredient mix.
1 bp.registerBThread("AddDries", function (){
2 for ( var i=0; i<5; i++ ) {
3 bp.sync({ request:ADD_DRY });
4 }});
5 bp.registerBThread("AddWets", function (){
6 for ( var i=0; i<5; i++ ) {
7 bp.sync({ request:ADD_WET });
8 }});

4.1.1 Plain Pancake Program

Let’s assume that our mixer is required to make batter for five pancakes. This

requires five doses of each mixture. The b-program presented in Listing 4.1

prepares the correct amount of batter by having two b-threads — one for each

type of mixture — request five addition events.

The program in Listing 4.1 does not by itself specify any order for adding

the mixtures. Consequently, the batter may become too thick or too thin

during the preparation process, such as when several dry doses are added

before any wet doses. Extreme batter thickness values can damage the mixer’s

engine, as they may cause it to run too fast or to exert too much e↵ort. In
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Listing 4.2: A b-thread that restricts pancake batter thickness by forcing the
addition of a dry mixture dose after each addition of a wet mixture dose.
The addition or removal of this b-thread from a b-program does not require
updating the code of other b-threads.
1 bp.registerBThread("StrictArbiter", function (){
2 while (true) {
3 bp.sync({ waitFor:ADD_WET , block:ADD_DRY });
4 bp.sync({ waitFor:ADD_DRY , block:ADD_WET });
5 }});

order to control the thickness of the batter, we must impose restrictions on

the order in which the mixture’s doses are added to the mixing bowl.

One way of controlling the addition order is by adding the StrictArbiter

b-thread shown in Listing 4.2. This b-thread repeatedly waits for an addition

of a wet dose, while blocking the addition of a dry dose. Once a wet dose

has been added, it will block the further addition of wet doses until a dry

dose has been added. It is worth noting that this b-thread does not request

any events — it simply waits for, or blocks them. More importantly, it can

be added to and removed from a b-program without a↵ecting the program’s

other b-threads.

The StrictArbiter b-thread in Listing 4.2 resolves the problem of extreme

batter thickness, by restricting the controller b-program to a single sequence

of events (namely, ADD_WET, ADD_DRY, ADD_WET,...). This type of solution is

overly restrictive — recall that we wanted to avoid extreme batter thickness

values, not to keep the batter at strictly 1:1 ratio between the mixtures.

Now, let’s consider a situation where a batter mixer runs out of dry mixture.

While the dry mixture tank is being re-filled, the mixer may still be able to

add more wet mixture, as long as the batter does not become too thin. To

allow this, we replace the StrictArbiter b-thread with two b-threads: one for

monitoring batter thickness, and another for blocking addition events when

batter thickness reaches values outside of defined range. A detailed description

of these b-threads follows.

ThicknessMeter, a b-thread that monitors batter thickness, is shown in

Listing 4.3. It maintains a thickness index by listening to addition events.
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Listing 4.3: A b-thread that keeps track of batter thickness. After each addi-
tion event, this b-thread updates its internal thickness index, sharing it with
the rest of the b-program by requesting a Thickness event that holds the
updated thickess index in its data field.
1 var ADDITION_EVENTS = [ADD_WET , ADD_DRY ];
2 bp.registerBThread("ThicknessMeter", function (){
3 var thickness =0;
4 while ( true ) {
5 var evt = bp.sync({ waitFor:ADDITION_EVENTS });
6 if ( evt.equals(ADD_DRY) ) {
7 thickness ++;
8 } else {
9 thickness --;

10 }
11 bp.sync({
12 request:bp.Event("Thickness", thickness),
13 block:ADDITION_EVENTS
14 });
15 }});

After each addition event, it announces the updated thickness index by re-

questing a Thickness event, while blocking all addition events. This block

is required, because if another addition event is selected before the thickness

event, the thickness event’s data will become stale.

The second b-thread we add is RangeArbiter (Listing 4.4), which keeps

the batter thickness within acceptable range by listening to batter thickness

events and blocking wet or dry mixture additions when the thickness index

crosses a threshold. For example, when batter thickness index is too high,

RangeArbiter blocks ADD_DRY.

With RangeArbiter in place instead of StrictArbiter, our batter mixer

can advance even when other parts of the system block the addition of, say,

wet mixture. And it is able to do so while keeping the the batter thickness in

its healthy range.

4.1.2 Preparing Blueberry Pancakes

We now add a new feature to our batter mixer: preparing blueberry pancakes.

This is done by attaching a controlled tank containing blueberries to the mixer,

and defining the BLUEBERRIES event, which prompts the host program to add a
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Listing 4.4: A b-thread that keeps the thickness of the pancake batter within
range, but allows the event selection mechanism a degree of freedom.
1 var THICKNESS_BOUND = 2;
2 bp.registerBThread("RangeArbiter", function (){
3 while ( true ) {
4 var thicknessEvt = bp.sync({ waitFor:THICKNESS_EVENTS });
5 var thickness = thicknessEvt.data;
6 var block;
7 if ( Math.abs(thickness) >= THICKNESS_BOUND ) {
8 block = (thickness >0) ? ADD_DRY : ADD_WET;
9 } else {

10 block = bp.none;
11 }
12 var evt = bp.sync({ waitFor:ADDITION_EVENTS , block:block });
13 }});

dose of blueberries to the batter. B-thread Blueberries, shown in Listing 4.5,

is responsible for requesting this event.

In the context of this chapter, we hold that the quality of a blueberry

pancake is proportional to the number of whole blueberries that it contains (as

opposed to the number of blueberries burst during the preparation process). To

keep blueberries from being burst, two conditions must be met at the time that

the blueberries are added. First, there must be enough batter in the mixing

bowl. Second, the batter must be relatively thin. B-threads EnoughBatter and

BatterThinEnough, also in Listing 4.5, block the blueberry addition event until

these conditions are met.

Depending on the order in which the dry and wet mixtures are added, there

may be cases where the BLUEBERRIES event is blocked by BatterThinEnough

throughout the execution of the program. A run where no blueberries are

added would breach system requirements. Section 4.2 proposes a way of de-

tecting this breach.

4.1.3 Blueberry Pancake Server

So far, our mixer has prepared batter for a single batch of pancakes, and thus

all of its runs were finite. We now consider a mixer variant, which repeatedly

prepares batter for a single batch, releases the batter (presumably to an auto-

mated pan — left for future work) and then prepares batter for the next batch.
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Listing 4.5: A set of b-threads responsible for adding blueberries. The
Blueberries b-thread requests a BLUEBERRIES event which, when selected,
causes the host program to add blueberries to the pancake batter. The other
b-threads will block the addition of blueberries until there is enough batter,
or if the batter is too thick.
1 bp.registerBThread("Blueberries", function (){
2 bp.sync({ request:BLUEBERRIES });
3 });
4

5 bp.registerBThread("EnoughBatter", function (){
6 bp.sync({ waitFor:ADDITION_EVENTS , block:BLUEBERRIES });
7 bp.sync({ waitFor:ADDITION_EVENTS , block:BLUEBERRIES });
8 bp.sync({ waitFor:ADDITION_EVENTS , block:BLUEBERRIES });
9 });

10

11 bp.registerBThread("BatterThinEnough", function (){
12 while ( true ) {
13 var blk;
14 var thicknessEvt = bp.sync({ waitFor:THICKNESS_EVENTS ,
15 block:blk ,
16 interrupt:BLUEBERRIES });
17 blk=( thicknessEvt.data >=0) ? BLUEBERRIES:bp.none;
18 }});

This variant’s runs are infinite, which makes it an interesting case study with

regard to liveness properties.

The server code, part of which appears in Listing 4.6, builds on the code in

Listing 4.1. The mixture addition loops are followed by a wait for a RELEASE

event, and are wrapped in an infinite loop. A newly added b-thread releases

the batter when the bowl contains enough of it. Parts of the code similar

to those presented earlier have been omitted for brevity — the full code is

available in the chapter’s code appendix [7].

4.2 Hot Synchronization Statements

In some circumstances, neither of the blueberry pancake mixers presented in

Section 4.1 will be allowed to add blueberries to the batter. This happens in

runs where the amount of dry mixture is always equal to or more than the

amount of wet mixture. In such cases, the BLUEBERRIES event is blocked by

BatterThinEnough throughout the execution of the program. This type of re-
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Listing 4.6: Parts of the pancake server code. Mixture-adding b-threads run
in an infinite loop, where they first add the required amount of doses to the
mixer bowl, then wait for the batter to be released. A Releaser b-thread is
responsible for releasing the batter when it reaches a set threshold.
1 var RELEASE = bp.Event("RELEASE_BATTER");
2

3 bp.registerBThread("Dry", function (){
4 while ( true ) {
5 for ( var i=0; i<DOSE_COUNT; i++ ){
6 bp.sync({ request:ADD_DRY });
7 }
8 bp.sync({ waitFor:RELEASE });
9 }});

10

11 bp.registerBThread("Releaser", function (){
12 var doseCount = 0;
13 while ( true ) {
14 bp.sync({ waitFor:ADDITION_EVENTS });
15 doseCount ++;
16 if ( doseCount === (DOSE_COUNT *2) ) {
17 bp.sync({ request:RELEASE ,
18 block:ADDITION_EVENTS });
19 doseCount =0;
20 }
21 }});

quirement violation poses an interesting challenge for behavioral programming,

since the ability to block events is central to the paradigm. In the blueberries

case, however, it is OK to block the BLUEBERRIES event for a while, as long as it

is eventually selected. This requirement cannot be expressed using existing BP

synchronization statements; so we will borrow the must/may modality idiom

from another scenario-based programming language: Live Sequence Charts

(LSCs) [48].

A b-thread can mark its synchronization statement as hot, stating that it

eventually must leave it. In other words, runs where a b-thread is forever stuck

at a synchronization point to which it submitted a hot synchronization state-

ment violate program requirements. We say that a b-thread is hot at a given

synchronization point, if it has submitted a hot synchronization statement to

that point.

The term hot is borrowed directly from LSC, where it has a similar semantic

meaning, albeit with reference to di↵erent constructs (see Section 3.1).
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Listing 4.7: A b-thread waiting for the BLUEBERRIES event to be selected, using
a hot synchronization point. By submitting a hot synchronization statement,
a b-thread states that it cannot be blocked at its current location indefinitely.
In the present case, this means that the BLUEBERRIES event must eventually be
selected. Adding this b-thread to the blueberry batter mixer from Section 4.1
will allow verification to detect runs where blueberries are never added.
1 bp.registerBThread("MustAddBlueberries", function (){
2 bp.hot(true).sync({ waitFor:BLUEBERRIES });
3 });

In BPjs, marking a synchronization point as hot is done using a builder-

like pattern, by calling bp.hot(true).sync(...). For example, the b-thread

in Listing 4.7 hot-waits for a BLUEBERRIES event to be selected. Such syn-

chronization statements do not force event selection. They do, however, allow

formal verification processes to detect runs where events that should eventually

be selected never are. This type of verification is explained in Section 4.4.

We now turn to the last modification of our batter mixer. In an attempt

to convert our blueberry pancake into a healthy meal, we have decided to add

kale to the batter. The amount of kale should, eventually, be equal to the

amount of blueberries. To this end, we define an ADD_EXTRAS event, with two

data fields: one for the amount of blueberries added, the other for the amount

of kale. Two new b-threads (one for blueberries, the other for kale), monitor

the amount of added extras, and make requests to ensure that the amounts

are balanced. Listing 4.8 contains selected part of the code (the full program

is available in [7]). Both b-threads request the addition of their respective

ingredient using a hot synchronization statement, since the ingredient portion

must eventually be added.

4.3 Formal Definition of Hot Synchronization

In this section we extend the formal definition for BP, presented in Section 2.2,

to support the hot synchronization concept. To this end, we add a function

H : S ! {0, 1} to Definition 2.2.1 (b-thread). This function marks statements
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Listing 4.8: Code for balancing the addition of blueberries and kale to our
proposed blueberry-kale pancake batter maker. The BlueberryAdder and
KaleAdder b-threads monitor the bluberry/kale ratio in the batter, and re-
quest events to adjust it if it becomes unbalanced. The b-threads use hot
synchronization requests, as the ingredients must eventually be added. Some
repeated code has been omitted for brevity.
1 function addExtrasEvent( blueb , kales ) {
2 return bp.Event("ADD_EXTRAS", {blueberries:blueb ,
3 kales:kales });
4 }
5 var ADD_EXTRAS = bp.EventSet("sADD_EXTRAS", function(e){
6 return e.name.equals("ADD_EXTRAS");
7 });
8

9 bp.registerBThread( "KaleAdder", function (){
10 var fruitIndex =0;
11 while (true) {
12 var evt = null;
13 if ( fruitIndex > 0 ) {
14 evt = bp.hot(true).sync({ request:addExtrasEvent (1,0),
15 waitFor:ADD_EXTRAS });
16 } else {
17 evt = bp.sync({ waitFor:ADD_EXTRAS });
18 }
19 fruitIndex = fruitIndex + evt.data.blueberries -evt.data.kales;
20 }});
21 bp.registerBThread( "BlueberryAdder", function (){...});
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as hot (H(s) = 1) or non-hot (H(s) = 0). The extended definition of a

b-thread is as follows:

Definition 4.3.1 (b-thread). A b-thread is a tuple hS,E,!, init, R,W,B,Hi
where hS,E,!, initi forms a labeled transition system, R : S ! 2E associates

a state with the set of events requested by the b-thread when in it, W : S ! 2E

associates a state with the set of events waited for by the b-thread when in it,

B : S ! 2E associates a state with the set of events blocked by the b-thread

when in it, and H : S ! {0, 1} is a labeling function that indicates if state is

hot (1) or cold (0).

The b-program definition (see Definition 2.2.2) does not need to be updated

to support hot synchronization. However, we can now say that a b-program

{hSi, Ei,!i, initi, Ri,Wi, Bi, Hii}ni=1 is hot at synchronization point s, if:

9i 2 [0..n] such that Hi(s) = 1

4.4 Adding Verification to the Mix

Using the formal definitions for b-thread (Definition 4.3.1) and b-program

(Definitions 2.2.2), b-programs can be verified against a set of formal require-

ments. Similar to traditional verification, the model checker traverses a tran-

sition system whose states represent the states the analyzed program can be

in. In BP program analysis, however, the transition system states represent

synchronization points, rather than memory values and program counter loca-

tions. Thus, the number of states involved in verifying a b-program is smaller

than that involved in a traditional verification process.

The transitions of a b-program’s transition system are labeled by events.

Outgoing transitions of each state represent events that were requested and

not blocked at that state. Incoming transitions represent events that bring

the b-program to that synchronization point, from the transitions’s respective

source state. It is important to note that, except when using random number

generators or accessing external resources, a b-program’s progression between
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Figure 4.2: The transition system of the plain pancake batter b-program.
Ovals represent synchronization points (states), while transitions represent
events. The text in the ovals indicates the number of doses of each mixture
added up to that point. Possible program runs traverse the graph, starting
at state (0, 0) and eventually reaching state (5, 5). All states are reachable
if running only Listing 4.1. When adding the strict arbiter b-thread in List-
ing 4.2, only the green/3-line states are reachable. When replacing the strict
arbiter with the RangeArbiter of Listing 4.4, the blue/2-line states also be-
come reachable.

synchronization points/states is completely determined by an ordered list of

events. Thus, a series of events leading to a state containing a requirement vi-

olation constitutes a counter-example, equivalent in value to counter examples

generated by traditional model checkers.

Figure 4.2 presents the transition system of the plain pancake batter maker

described in Listing 4.1. It also demonstrates how the arbiter b-threads in

Listings 4.2 and 4.4 limit the possible runs of the plain batter mixer.

It sometimes makes sense to add b-threads to a b-program to support

its verification process. We refer to the verified b-program, which contains
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the core b-program and verification-only b-threads, as the greater b-program

(borrowing “greater” from urban planning, as in “Needham is a town in greater

Boston”). Common examples of such b-threads include:

Requirements

B-threads that directly model system requirements, by waiting for events

and informing the model checker of violations. This is done either by

marking states as problematic (see Subsection 4.4.1), or by using hot

synchronization statements for detecting cases where an event that must

eventually be selected, is never selected. These b-threads do not interfere

with the execution of the core b-program; they only wait for events, and

do not request or block them.

Environment Simulation

B-threads that simulate the b-program’s environment, by requesting

events normally requested by the host program, based on its interaction

with the environment (e.g. user input or sensor data). These b-threads

turn the greater b-program into a b-program that does not require ex-

ternal events in order to progress; as a result, a deadlock in a greater

b-program is likely a bug (see Subsection 4.4.2).

Assumptions and Focus

B-threads that direct or keep the verifier in a specific part of the pro-

gram’s state-space. For example, when focusing on cases where blueber-

ries are to be added, it makes sense to add a b-thread that prevents runs

where blueberries are never added, e.g. by blocking ADD_DRY at specific

points.

Under BPjs, verification of a b-program occurs as follows. A b-program

verifier traverses the b-program’s state graph using depth-first search, with a

possible bounded depth. During this traversal, the verifier searches for the

following violations1:

1
Users can change the search parameters, and add new inspections as well. The items

listed here are the default set.
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1. Nodes marked as having violations

2. Deadlocks

3. Hot Cycles

4. Hot Terminations

If any of the items listed above is found, the verifier informs the host

application of the violation. It additionally provides a counter example, in

the form of a trace containing program states and events. The host can then

decide whether verification should continue or not. These traces are useful

counter examples, as their events use the same terms as those used by the

programmers writing the b-program.

BPjs uses direct verification: transition between two synchronization points

is done using code execution. To this end, BPjs captures a continuation of each

b-thread when it calls bp.sync. The continuation is serialized for storage, and

de-serialized for the traversal from its node to a next one. For this technically

complex feat, we rely in part on the features of Mozilla Rhino [85].

4.4.1 Safety Properties

Safety properties describe a scenario where “something went unrecoverably

wrong” [3]. In this case, this means that a b-program has reached a state that

violates one or more of its requirements. For the plain pancake batter mixer

(Listing 4.1) composed with the RangeArbiter of Listing 4.4, this would mean

that batter thickness is no longer within the predefined range.

We propose that states be marked as “bad” using assertions. B-threads call

bp.ASSERT, passing to it an expression that evaluates to a boolean value, and

an optional human-readable description of what was violated if the expression

evaluates to false. Listing 4.9 shows RangeVerification, a b-thread that

tracks batter thickness and confirms that it is within valid range.

During verification, false assertions are used to mark synchronization points

as having a violation. Listing 4.10 shows a verification output for a b-program
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Listing 4.9: A b-thread modeling the formal requirement “batter thickness
has to be between -3 and 3”. This b-thread maintains a local variable which
monitors batter thickness. Each time an addition event is selected, the variable
is updated and tested against the assertion. This is a typical requirement b-
thread, in that it does not interfere with the core b-program’s events, and is
aligned with the requirement it validates.
1 bp.registerBThread("RangeVerification", function (){
2 var thickness =0;
3 while (true) {
4 var evt = bp.sync({ waitFor:ANY_ADDITION });
5 if ( evt.name == ADD_WET.name ) thickness --;
6 if ( evt.name == ADD_DRY.name ) thickness ++;
7 bp.ASSERT(Math.abs(thickness)<3,
8 "Batter thickness out of range ("+thickness+")");
9 }});

Listing 4.10: Verification result of the pancake batter b-program with
RangeArbiter. The output shows the violated assertion, and presents the
sequence of events that led to it. Some lines have been omitted for brevity.
1 # Verification completed.
2 # Violation type: FailedAssertion
3 # Failed assertion: Batter thickness out of range (thickness: 3)
4 # By b-thread: RangeVerification
5 # Counter example:
6 # [BEvent name:ADD_DRY]
7 # [BEvent name:ADD_WET]
8 # [BEvent name:ADD_WET]
9 # [BEvent name:ADD_DRY]

10 # [BEvent name:ADD_DRY]
11 # [BEvent name:ADD_DRY]
12 # [BEvent name:ADD_DRY]

composed of the plain batter mixer, a modified version of the RangeArbiter,

and RangeVerification (Listings 4.1, 4.4, and 4.9, respectively). The modifi-

cation to RangeArbiter was the common mistake of replacing >= with >. This

outputs a counter-example: a possible run of the composed b-program, where

batter thickness goes beyond the predefined range. The trace to the violating

state is listed as well. On the state graph in Figure 4.2, this is equivalent

to traversing the path (0, 0) ! (0, 1) ! (1, 1) ! (2, 1) ! (2, 2) ! (2, 3) !
(2, 4) ! (2, 5).

Assertions can also be useful at runtime, where they will halt program
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execution if their condition evaluates to false. This is a form of runtime

verification[1], prompting the emergency shutdown of a program if selected

conditions have been violated. Should this occur, the BPjs runtime informs

the host program of the failed assertion. This gives the host the opportunity

to enter a “safe mode”, to re-start the b-program with di↵erent parameters,

or even to automatically patch it [43, 62].

Discussion - Safety properties Under BP, when a safety requirement can

be phrased as series of n events, we can model it using a forbidden scenario

b-thread. This b-thread waits for the first n � 1 events, and then blocks the

last event. Whenever a forbidden scenario b-thread is added to a b-program,

that b-program is safe-by-construction with regard to the safety requirement

that the forbidden scenario models.

Formally, suppose a run s0
e0�! s1

e1�! s2 . . .
en�1��! sn violates a safety require-

ment when it gets to state sn. By adding a b-thread bfix = hSfix, Efix,!fix

, initfix, Rfix,Wfix, Bfix, Hfixi, where 8i 2 [0 . . . n� 2].{ei} = Wfix(si),

{en�1} = Bfix(sn�1), and 8j 2 [0 . . . n].Rfix(sj) = ;, we can prevent the

b-program from taking this execution path. Adding bfix will not a↵ect the

b-program run up to sn�1, as it only waits for events until that state; it does

not request or block them.

Forbidden scenarios can only be used for internal system processes. For

example, there is no point blocking an event announcing that the tracking rover

has fallen too far behind its leader (assuming that the leader is an external

system). This is why failed assertions are useful — they can declare cases that

the system does not have full control over as invalid. If the system did have

full control over the occurrence of a requirement-violating event, it would have

simply blocked it, e.g. by adding an appropriate bfix as described above.

One type of safety property cannot be expressed using the assertion mech-

anism: Deadlocks.
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Listing 4.11: Verification result of a b-program composed of plain pancake
maker, blueberry adder, and thickness monitor (Listings 4.1, 4.3, and 4.5, re-
spectively). The verification found a deadlock, where Blueberries requests
the BLUEBERRIES event, which is blocked by BatterThinEnough. The b-
program is considered deadlocked as it cannot advance any further, but re-
quested events remain unfulfilled. Some lines have been omitted for brevity.
1 # Verification completed.
2 # Found Violation:
3 # Deadlock: [BEvent name:ADD_BLUEBERRIES]
4 requested by:{ Blueberries}
5 blocked by:{ BatterThinEnough}
6 # Counter example trace:
7 # [BEvent name:ADD_DRY]
8 # [BEvent name:Thickness data :1.0]
9 # [BEvent name:ADD_DRY]

10 # [BEvent name:Thickness data :2.0]
11 # [BEvent name:ADD_DRY]
12 # [BEvent name:Thickness data :3.0]
13 # [BEvent name:ADD_DRY]
14 # [BEvent name:Thickness data :4.0]
15 # [BEvent name:ADD_WET]
16 # [BEvent name:Thickness data :3.0]
17 # [BEvent name:ADD_DRY]
18 # [BEvent name:Thickness data :4.0]
19 # [BEvent name:ADD_WET]
20 # [BEvent name:Thickness data :3.0]
21 # [BEvent name:ADD_WET]
22 # [BEvent name:Thickness data :2.0]
23 # [BEvent name:ADD_WET]
24 # [BEvent name:Thickness data :1.0]
25 # [BEvent name:ADD_WET]
26 # [BEvent name:Thickness data :0.0]

4.4.2 Deadlocks

A b-program is deadlocked if it has reached a synchronization point where

all requested events are blocked, and there is at least one requested event.

In these cases, said b-program cannot advance, even though some of its b-

threads do attempt to do so. For example, when running the plain pancake

b-program composed with the blueberry addition (Listings 4.1, 4.3, and 4.5),

the composed program might end in a situation where b-thread Blueberries

requests the addition of blueberries, but BatterThinEnough blocks the relevant

event. Listing 4.11 shows an output of a verification of this program.
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Discussion - Deadlocks As event blocking is a central concept in behav-

ioral programming, deadlocks are a recurring concern for developers. In partic-

ular, developers must avoid blocking large event sets, such as “all events except

X”. To this end, formal analysis for detecting deadlocks is an important aspect

of the behavioral programmer’s toolbox.

B-programs that listen to external events require a more subtle approach

to deadlock detection. This is because even if at a given synchronization point

no b-thread can advance, an external event that is waited-for may be requested

by the environment, and allow the b-program to break out of the lock. This

creates an important distinction between a b-program and a greater b-program

built around it: a b-program can sometimes reach a deadlock as part of its

normal operation, since its environment might generate events that will break

the lock at some point in the future. A greater b-program should never reach

a deadlock, since it also contains an environment simulation.

Formally, we say that a b-program
�
hSi, Ei,!i, initi, Ri,Wi, Bi, Hii

 n

i=1
is

deadlocked at state s if

n[

i=0

Ri(s) \
n[

i=0

Bi(s) = ;
| {z }

No selectable events

^ n[

i=0

Ri(s) 6= ;
| {z }

Requested events exist

In some cases, while “Deadlock” can provide a low-level explanation for

why things went wrong, it may miss the bigger picture regarding what went

wrong. In the blueberry addition verification trace example (Listing 4.11), it is

not incorrect that the BLUEBERRIES event was requested and blocked, and that

consequently the b-program as a whole could not advance. However, a better

explanation of the violation would be “we requested blueberries but they were

never added”. This type of explanation can be achieved by verifying liveness

properties.
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Listing 4.12: B-threads for typical liveness properties, expressed in LTL in the
b-thread name. B-threads may wait for or request events mentioned by the
requirement they model. This is an idea carried over from LSC’s execute/-
monitor modality, and is orthogonal to the hot/cold modality (also referred to
as must/may).
1 bp.registerBThread("3X", function (){
2 bp.hot(true).sync({ request:X}); // execute/initiate
3 });
4 bp.registerBThread("23Y ", function (){
5 while ( true ) {
6 bp.hot(true).sync({ request:Y}); // monitor
7 bp.sync({ waitFor:ALL});
8 }
9 });

4.4.3 Liveness Properties

Liveness properties, as defined by Baier and Katoen in [3], require infinite runs

to conform to a requirement, and do not constrain finite runs. Accordingly,

execution traces violating liveness requirements contain an infinite loop or

visit an infinite amount of states, while those violating safety requirements

are linear. Another di↵erence between safety and liveness properties in BP is

that for safety properties, the blocking idiom often allows b-programs to be

correct-by-construction: if an event should not happen at a given situation, it

can just be blocked. On the other hand, ensuring that a b-program complies

with liveness requirements requires verification.

A typical liveness property would be “eventually X happens” or “Y happens

infinitely often”. The B-threads in Listing 4.12 express these requirements in

BP, by marking a synchronization statements as hot. This signals that they

must eventually leave said point.

Due to the inherently concurrent nature of behavioral programs, their live-

ness properties are more elaborate than those of single-threaded programs. At

a given synchronization point, some b-threads may be hot (which means that

they must eventually leave said point), while other b-threads may stay at that

point indefinitely without violating any requirement. Additionally, we need

to consider the semantics of a b-program terminating when one or more of its
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b-threads is hot.

Verification of liveness properties of a b-program is performed by examin-

ing the b-program’s state-space graph, and searching for hot cycles and hot

terminations. These state-space graph structures are further explained below,

and are shown in Figure 4.3.

Cold Cycle

A cycle where at least one synchronization point consists of non-hot

statements only. These cycles do not violate any liveness requirements,

since a b-program can stay at this cold synchronization point indefinitely.

B-Program Hot Cycle

A cycle where all synchronization points contain hot statements, but

each b-thread passes through at least one synchronization point where it

is non-hot. In these cycles, the b-program complies with all the liveness

requirements modeled by individual b-threads. However, as a whole,

the b-program must advance infinitely, since staying at each of the cy-

cle’s synchronization points indefinitely will violate at least one liveness

requirement.

B-Thread Hot Cycle

A cycle where at least one b-thread is hot throughout. An infinite run

that follows a b-thread hot cycle violates the liveness properties repre-

sented by the requirement b-threads that are always hot at that cycle.

Hot Termination

Technically not a cycle, and in a technical sense does not contain any

liveness violations. But it does demonstrate an interesting case, where

liveness terminology is useful for describing a safety requirement. Sub-

section 4.4.6 elaborates further on this point.

Given a liveness requirement, it is possible to detect its violation by finding

an appropriate hot cycle or termination in the verified b-program state-space

graph. The idiomatic case for this would be a b-thread hot cycle, where
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Figure 4.3: State-space graphs of four b-program, demonstrating di↵erent
structures involving hot synchronization points. All b-programs contain two
b-threads throughout. Progression is from top to bottom, where each row is
a synchronization point. At each point, hot b-threads appear in dark red,
and non-hot b-threads appear in light blue. Cold Cycles contain at least a
single synchronization point where all b-threads are non-hot. These cycles do
not breach any liveness requirements. B-Program Hot Cycles are composed
of synchronization points that all have at least one hot b-thread (individu-
ally, each b-thread may be cold at some synchronization points during the
cycle). These cycles may or may not violate liveness requirements, depending
on the context and the requirement definition. B-Thread Hot Cycles consist
of synchronization points in which at least one b-thread is always hot. If said
b-thread represents a liveness requirement, a program execution that forever
follows this cycle violates the requirement that b-thread models. Hot termina-
tion is a violation of a safety property, as the b-program run is finite. However,
the requirement being violated may be described better in liveness terms.
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the hot b-thread is a requirement b-thread modeling the violated requirement

directly. An example of such b-thread is MustAddBluberries, in Listing 4.7,

which simple hot-waits for the BLUEBERRIES event. A b-program hot cycle

may also signal the violation of a liveness requirement, albeit more implicitly.

Formally, a run hs(0)1 , . . . , s
(0)
n i e1�! hs(1)1 , . . . , s

(1)
n i e2�! · · · of a b-program

h{Si, Ei,!i, initi, Ri,Wi, Bi, Hii}ni=1:

• Contains a b-thread hot cycle if 9i 2 [1 . . . b] and t0 > 0 such that

Hi(s
(t)
i ) = 1 for all t > t0.

• Contains a b-program hot cycle if 9t0 > 0 such that
Pn

i=1 Hi(s
(t)
i ) > 0

for all t > t0.

• Contains a b-program cold cycle if for any t0 > 0 there exists t > t0 such

that
Pn

i=1 Hi(s
(t)
i ) = 0.

• Contains a hot termination if it is of finite length l and
Pn

i=1 Hi(s
(l)
i ) > 0.

• Contains a cold termination if it is of finite length l and
Pn

i=1 Hi(s
(l)
i ) = 0.

We now describe each of the structures that may contain violations in

detail.

4.4.4 B-Program Hot Cycles

During a b-program hot cycle, each b-thread is non-hot infinitely often. How-

ever, at each synchronization point in the cycle, at least one b-thread is hot.

Thus, the b-program as a whole must always advance. Consider, as an exam-

ple, the code for balancing blueberries and kale (Listing 4.8). Here, KaleAdder

and BlueberryAdder add a single dose of their respective ingredients when they

detect that the extras ratio is o↵. They are both hot when they request the

addition. If we start the b-program with the addition of half a dose of, say,

kale, then these two b-threads will begin to add blueberries and kale to the

mix and will never stop, because the fruit index will veer from 0.5 to -0.5 and

back indefinitely. Indeed, if we tell the BPjs verifier to search for b-program

hot cycles, we will get the report in Listing 4.13.
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Listing 4.13: Verification log of the Blueberry/Kale balancer (Listing 4.8),
when adding a 0.5 dose of kale. Adding b-threads indefinitely try to balance
the respective quantities of blueberry and kale, but to no avail. The b-program
as a whole gets into a hot cycle, but each b-thread is also non-hot during this
cycle. Some lines have been omitted for brevity.
1 # Verification completed.
2 # Found Violation:
3 # Hot cycle violation: returning to index 1 in the trace
4 because of event [BEvent name:ADD_EXTRAS
5 data:{ blueberries =>0.0, kales = >1.0}]
6 # Counter example trace:
7 # [BEvent name:ADD_EXTRAS data:{ blueberries =>0.0, kales = >0.5}]
8 # [BEvent name:ADD_EXTRAS data:{ blueberries =>1.0, kales = >0.0}]

As described here, this infinite addition of ingredients is a bug. However,

one can think of similar cases where this is a desired behavior. Examples

include the guidance system of a rover, where b-threads correct its course

as it follows a target, indefinitely; or a tra�c lights system, where some b-

threads must ensure that the round-robin queue of the tra�c lights progresses

indefinitely.

4.4.5 B-Thread Hot Cycle

During a b-thread hot cycle, at least one b-thread is hot during the entire

cycle. If said b-thread models a requirement — which is often the case — a

run where a b-program executes this cycle forever violates the a requirement

modeled by that b-thread.

The pancake server in Listing 4.6 shows an interesting example of this.

Composed with the range arbiter and the blueberries b-threads (Listings 4.4

and 4.5 respectively), it may or may not add blueberries at each cycle. If

we want to ensure that blueberries are added at least once, we can add the

b-thread in Listing 4.14, and verify the composed b-program for liveness prop-

erties. Indeed, the verification process finds a b-thread hot cycle, which enables

an infinite run where blueberries are never added2.
2
To ensure that blueberries are added with each cycle, it will be necessary to add a

b-thread asserting that a BLUEBERRIES event is selected between each two selections of the
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Listing 4.14: A b-thread modeling the requirement that blueberries are even-
tually added to the pancake batter.
1 bp.registerBThread("MustAddBlueberries", function (){
2 bp.hot(true).sync({ waitFor:BLUEBERRIES });
3 });

Listing 4.15: Verification output for the pancake server (Listing 4.6) composed
with the blueberries code (Listing 4.5) and the must-add-blueberries b-thread
above. The verification process found a cycle where blueberries are never
added to the batter. During this cycle, the MustAddBluberries b-thread,
whose requirement is being violated, is always hot.
1 # Verification completed.
2 # Found Violation:
3 # Hot b-thread cycle violation: b-threads
4 MustAddBlueberries can get to an infinite hot loop.
5 Cycle returns to index 0 because of event [BEvent name:RELEASE_BATTER]
6 # Counter example trace:
7 # [BEvent name:ADD_WET]
8 # [BEvent name:ADD_DRY]
9 # [BEvent name:ADD_DRY]

10 # [BEvent name:ADD_WET]
11 # [BEvent name:ADD_WET]
12 # [BEvent name:ADD_DRY]
13 # [BEvent name:ADD_DRY]
14 # [BEvent name:ADD_DRY]
15 # [BEvent name:ADD_WET]
16 # [BEvent name:ADD_WET]
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4.4.6 Hot Termination

Hot termination happens when a b-program terminates while one or more of its

b-threads are hot. As noted above, liveness properties do not apply with finite

runs. Thus, a hot termination is a violation of a safety property. However,

describing requirements using liveness terms may allow the verification process

to detect the requirements that are being violated at a higher level.

Consider the finite run of the plain batter b-program, composed with the

blueberries addition logic. We used this program in our discussion about

deadlocks (Subsection 4.4.2). Here, we add the MustAddBlueberries b-thread

(Listing 4.14) to the b-program, and verify it (Listing 4.16). This time, in-

stead of detecting a deadlock, the verifier returns a counter example, where

MustAddBlueberries hot-terminates. This is a significant improvement, as a

deadlock can explain how a requirement was violated, but does not identify the

violated requirement. Hot termination detection, on the other hand, focuses

on the requirement that was violated, without considering the technicalities

regarding how the violation occurred.

It may be possible to intuit why hot terminations are better phrased as

liveness violations by trivially extending finite runs to infinite ones, as follows:

Let r be a finite b-program run s0
e0�! s1

e1�! . . .
en�1��! sn. We extend it to

an infinite run by adding a self loop at sn, using a trivial event ⌧ . This make

r become s0
e0�! s1

e1�! . . .
en�1��! sn

⌧�! sn
⌧�! sn . . . . Extended this way, r

becomes a run with a b-thread hot cycle. This cycle violates the requirement

violated by the hot termination, but does so as a liveness violation: an infinite

run where an event that should happen never does.

Hot-termination analysis is useful from an engineering perspective, as it al-

lows developers to declare that a certain event should be selected without spec-

ifying who should request it. This is especially useful for BP, where programs

are composed of multiple b-threads and are thus prone to mis-configurations,

such as the omission of program parts. In cases where the missing parts are

those responsible for requesting an essential event, adding a b-thread that

RELEASE event, and before the first time that it is selected. This, however, is a safety

property and not a liveness one.
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Listing 4.16: Verification log detecting the hot termination of a blueberry
batter mixer b-program, with an added MustAddBlueberries b-thread. The
counter example returned mentions the violated requirement. This is an im-
provement over the verifier output in Listing 4.11, which found a deadlock.
Both outputs describe the same problem, but the report here explains what
requirement was violated.
1 # Verification completed.
2 # Found Violation:
3 # Hot Termination - The following b-threads were
4 hot when the b-program ended: MustAddBlueberries
5 # Counter example trace:
6 # [BEvent name:ADD_DRY]
7 # [BEvent name:Thickness data :1.0]
8 # [BEvent name:ADD_WET]
9 # [BEvent name:Thickness data :0.0]

10 # [BEvent name:ADD_DRY]
11 # [BEvent name:Thickness data :1.0]
12 # [BEvent name:ADD_DRY]
13 # [BEvent name:Thickness data :2.0]
14 // abbreviated ...

hot-waits for that event ensures that mis-configured programs will not pass

verification.

Hot termination violations can be phrased as safety properties by adding

a special PROGRAM DONE event, which is only selected if there are no other

selectable events. Then, we can add a safety property forbidding that event

from being selected before the hot-requested event has been selected. e.g. in:

1 var e = bp.sync({ waitFor :[ PROGRAM_DONE ,BLUEBERRIES ]);

2 bp.ASSERT( e !== PROGRAM_DONE );

While this description is intuitive, it raises important concerns. First,

adding a PROGRAM DONE event introduces a special case (event) into a system

that does not yet have any special cases. Second, in order to raise the failed

assertion, the listed b-thread must run after the PROGRAM DONE event has been

selected. This, in turn, makes the b-threads waiting for this event special cases

too, and raises questions such as “Can a b-thread synchronize after receiving

a PROGRAM DONE event?”, “Can the PROGRAM DONE event be requested by a

regular b-thread?”, and “Can the PROGRAM DONE event be blocked?”.

All in all, this transformation holds; but it muddies the semantics of events
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and b-threads, and thus can be considered “non-elegant”.

4.5 Related Work

The work presented here draws its main concept — a hot state that a program

must eventually leave — from Live Sequence Charts (LSC) [23, 48]. LSC is

a variant of Scenario Based Programming, that extends Message Sequence

Charts with modalities. Among other things, LSC allows for a message to

be labeled as may be passed or as must be passed. Messages that must be

passed are called hot messages. Locations where lifelines receive or send hot

messages are called hot locations. A lifeline at a hot location must, at some

point, advance beyond that location.

For live copies of live sequence charts, LSC defines the notion of a cut,

which maps each of the chart’s lifelines according to its current location. If

any of these locations is hot, then the cut is considered as hot as well. This is

the equivalent of the concept of b-program hot cycles presented here. LSC does

not, however, o↵er a distinction similar to that made here between b-thread

and b-program hot cycles.

LSC forbids exiting a chart while its cut is hot. The hot termination

concept presented here is similar to this requirement.

In [55], Harel and Segall define the concepts of local justice satisfaction and

global justice satisfaction. A system is said to satisfy an LSC specification in

the local justice sense if, in all its possible runs, each of its LSCs are inactive

infinitely often. A system is said to satisfy an LSC specification in the global

justice sense if, in all its possible runs, all its LSCs are simultaneously inactive

infinitely often. The justice concepts are comparable to b-thread hot cycle

(local) and b-program hot cycle (global), even though they do not address

liveness directly.

In [68], Klose, Toben, Westphal, and Wittke noted that LTL formulas

describing LSCs become prohibitively large for LSCs of moderate size. They

proceeded to identify two sub-classes of LSCs that can be verified e�ciently:

bonded LSCs, which can be verified using an observer automaton and a small

79



liveness property; and bonded and time-bound LSCs, which can be verified

using reachability analysis.

LSC can be verified for liveness properties by translation to LTL, automa-

tons, or SMV modules [45]. We are not aware of any way to directly verify an

LSC specification. A means of translating LSC to BPjs programs is proposed

in [9]. Building on this translation, the work presented here opens another path

for verifying the liveness properties of LSCs through model transformation.

The methodology for verifying liveness properties by marking synchroniza-

tion points as hot and then searching for hot cycles in the b-program state-

space graph was sketched by Harel, Lampert, Marron, and Weiss in their work

on BPMC, the behavioral programming model checker [46]. This sketch has

never been implemented, though. Unlike the present work, BPMC does not

distinguish between b-thread hot cycles and b-program hot cycles, and does

not o↵er an equivalent to the hot termination concept presented here.

BPMC and BPjs detect deadlocks in the same way, but di↵er in their

interpretation of a state with no requested events. BPMC identifies this as a

deadlock, as it is a state with no successors. BPjs, on the other hand, does

not identify it as a deadlock, since no b-thread is blocked. This distinction,

however, only holds for safety properties. If a b-program gets to a state where

no events are requested but at least one b-thread is hot, BPjs will declare this

to be a liveness violation (b-thread hot cycle). Moreover, through its modular

nature, BPjs supports BPMC’s deadlock interpretation.

BPC (see Section 2.3) supports indirect program verification by translating

b-programs to SPIN models [60].

As presented here, we simulate system environment by adding environment

b-threads to a greater b-program. These are regular b-threads, and BPjs is not

aware of their environment semantics. However, it is possible to distinguish

them from the rest of the b-threads using a specialized event selection strategy,

e.g. one that selects an event requested by the environment only if there is no

selectable event requested by a system b-thread. In [78], Maoz and Sa’ar take

a di↵erent approach — they extend the LSC language with assume-guarantee

scenarios. These scenarios allow developers to enrich an LSC specification
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with liveness and safety assumptions about the system’s environment.

To the best of out knowledge, the work presented here is the first to o↵er

a method for the direct verification of the liveness properties of behavioral

programs. It is also the first to present a distinction between hot b-program

cycles and hot b-thread cycles.

4.6 Conclusion

We have presented here a method for verifying the safety and liveness proper-

ties of b-programs. The methodology is based on inspecting the state space of

a b-program. To detect safety violations, we propose searching for nodes (syn-

chronization points) that contain violations; to detect liveness violations, we

propose marking b-threads as hot at certain synchronization points, and then

searching for hot cycles. We have identified two types of possibly problem-

atic hot cycles: b-thread hot cycles, which are always a violation of a liveness

property; and b-program hot cycles, which may or may not be a violation. We

further identified hot termination — a case where phrasing the safety require-

ment of a finite program using liveness terms allows the verification process to

identify violated requirements at a higher level of abstraction.
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Chapter 5

Semantic Variations using BP

The work described here was published in [9].

Diagrammatic modeling languages hold great promise for software engi-

neering, given their ability to depict — literally — structural and behavioral

specifications. While some diagrammatic languages have been adopted in doc-

umentation and high-level design, their overall promise still remains largely

unrealized with regard to describing executable models. Almost 30 years af-

ter Harel first presented StateCharts [38], diagrammatic languages are still

considered “doodles” by many practitioners [53].

This chapter proposes a methodology for describing the executable seman-

tics of diagrammatic modeling languages, together with an execution engine

based on this definition. In the proposed methodology, languages are defined

by pairs of queries and mappers. The queries, defined by a language’s diagram-

matic syntax, return language constructs. These constructs are mapped by the

mappers to behavioral programming-based models. The resultant definition

is executable, can inter-operate with similar definitions of other languages,

and can be accessed by practitioners who read code but are less familiar with

transition formulae. We demonstrate our approach by defining and creating

an execution engine for a subset of the LSC language.

Factors hindering the adoption of diagrammatic languages for execution

include the lack of an accessible definition of executable semantics, and the
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absence of runtime engines that can inter-operate with text-based code. Our

proposed methodology creates language definitions accessible to anyone who

can read procedural formulation. Because the diagrams are translated into

BP code, they can be embedded in a traditional software system easily — as

described in Subsection 3.3.2 (and, in greater detail, in Chapter 6).

The chapter is organized as follows: Sections 5.1 and 5.2 introduce the

concept of querying diagrams, and discusses the process of mapping them to

BP-based code. Sections 5.3 and 5.4 apply this approach to a subset of the

Live Sequence Chart language (LSC). Section 5.5 describes a runtime tool for

LSC, implemented in line with these definitions. Section 5.6 demonstrates how

the proposed approach can be used to accommodate semantic variation points.

Section 5.7 considers related work, and Section 5.8 presents our conclusions.

5.1 Semantic Mapping to BP

We propose translating diagrammatic languages to BP code by using a set of

hquery,mappersi pairs, and a set of BP events which we call Source-Semantic

Events. The queries, defined using the source language’s terms and semantics,

traverse the diagram being translated, and collect diagram elements that fit

their criteria. These elements are constructs of the diagrammatic language,

and as such have well defined semantics. The mappers then take the collected

diagram elements/language constructs, and generate a set of b-threads. We

call these b-threads construct agent b-threads, or CABs, for short.

CABs act on behalf of their construct during program execution (hence

their name). Source Semantic Events are used to signal events in the original

program, e.g. “message passed” for LSCs, or “step completed” in an Activity

Diagram [88]. This mapping process is described in Figure 5.1.

The language that we used in the robot-in-a-house (Subsection 3.3.2) is

another example of this approach. There, we used an ASCII drawing, mapping

each character to 0 or more b-threads.

The set of query-mapper pairs define the executable semantics of the dia-

grammatic language. A b-program generated by a set of query-mapper pairs

83



Query

Source Language Mapping Behavioral Programming

source 
code

result1

CAB

CAB

CAB

BProgram

•••

result2

CAB
CAB

CAB

•••

resultk

CAB
CAB

CAB
•••

•  •  •

Semantic
Mapping

BThread
Registration

Figure 5.1: Defining executable semantics for diagrammatic languages using
querying and mapping. Queries select constructs from a diagram. Selected
constructs are mapped to one or more Construct Agent B-threads (CABs).
Run together, those CABs generate a valid execution of the original program.

is a valid representation of the mapped source program, in that the order of

source-semantic events, in all its possible runs, are in accordance with the

definitions of the defined diagrammatic language.

From a BP point of view, there is nothing special about a CAB or a source-

semantic event. While both carry special semantics for the diagrammatic

program, these semantics are only present during the interpretation of the

b-program’s event trace — not during the execution of the b-program.

To summarize the process: first, queries and mappers take a program in

a diagrammatic language, and translate it to BP code. The source semantic

events in the b-program’s execution trace then map the execution of the b-

program to the execution of the diagrammatic program.

5.2 Discussion

Describing the semantics of a formal diagrammatic language by mapping its

constructs to BP presents a number of benefits. The resultant definitions

are both formal and accessible, as they use simple code snippets rather than
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transition formulae. Furthermore, the definitions are executable and verifiable.

This allows language developers to test and verify language constructs by

using sample programs, which is an e↵ective means of detecting the language

inconsistencies that may result from a combination of constructs. Language

users benefit from executable definitions, because they can write programs to

test their understanding of the language, and experiment with it.

This combination of readability, formality, executability, and verifiability

is an improvement on existing practices.

The structure of the resultant definition is intuitive and easy to navigate,

because the query-mappers pair structure is similar to that of a language refer-

ence. In our experience, many CABs can be reused across multiple constructs.

Because CABs define semantics, this is not just regular code reuse, but also

concept and comprehension reuse.

Formality, executability, and verifiability are crucial for removing ambigu-

ities. Obviously, non-formal definitions can be ambiguous (e.g. Chan et. al.

about Java [20], and Fecher et. al. about UML2.0 [29]). But even fully formal

semantics definitions using transition formulae are prone to errors, as shown

by Klein et. al. in [67].

The proposed approach will allow language developers to mix and match

semantic variations of language constructs independently, as changes to the

semantics of a single construct is undertaken by changing the relevant mapper

only. Adding and removing language constructs can be experimented with in

similar fashion (See Section 5.6).

Finally, because BP is the common denominator for diagrammatic lan-

guages defined using the proposed approach, these executable definitions will

allow for language interoperation.

The method proposed here is a form of translational semantics, using a

categorization system proposed by Da Silva [99]. This is as opposed to struc-

tural operations semantics, which describe semantics through a set of inference

rules.

Da Silva further proposed a 2-orthogonal space with formal/informal and

executable/non-executable axes. Interestingly, modeling languages with non-
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executable semantics, such as UML class diagrams, can still be translated to

b-programs in order to impose structural constraints. For example, if a model

requires that every car instance has four wheels, this rule can be imposed in

BP by introducing a b-thread that listens to car instantiations. When a car is

instantiated, the constraint b-thread will spawn a b-thread that hot-waits for

the creation of four wheels, and then blocks the creation of additional wheels

for that instantiation.

Our proposed approach is, of course, not perfect. When a language con-

struct is mapped to a large number of CABs, the reader must keep in mind the

state of those CABs, in order to fully comprehend that construct’s behavior.

This challenge is alleviated somewhat by CAB comprehension reuse. Another

acknowledged issue is that the definition relies on BP, which is still at an early

adoption stage.

5.3 Case Study: Semantic Variations of LSC

We will now demonstrate our approach by defining the operational semantics

of a subset of Live Sequence Charts (LSC). LSC is a diagrammatic program-

ming language that extends classical message sequence charts, mainly through

universal interpretation and must/may, monitor/execute modalities. The lan-

guage was developed by Damm and Harel [23], and was first implemented in a

tool called Play-Engine [48]. A UML compliant variant is implemented by the

PlayGo tool [47]. The semantics of the PlayGo version, which di↵er slightly

from those of Play-Engine, are described in [82].

An LSC system is comprised of scenarios and objects. Each scenario de-

scribes a facet of the system’s behavior, and is described in a live sequence

chart (an LSC). Overall system behavior is the outcome of the concurrent exe-

cution of all of the LSCs the it contains. A model LSC is shown in Figure 5.2.

Objects, which appear in LSCs as lifelines, can send messages either to

each other or to themselves. Messages are depicted in the charts by horizontal

arrows between lifelines. Messages can be tagged as must occur (“hot”, red)

or may occur (“cold”, blue), and as executed (“execute”, solid) or waited for
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c1:Card c2:Card p:Panel

flip()

flip()

flipDown()

flipDown()

beep()
SYNC

!(c1.value.equals(c2.value))

User

Figure 5.2: LSC describing a basic move in a card memory game. After the
user flips two cards, a beep is emitted. If the cards are di↵erent, they are
flipped back face-down. The first two events may or may not happen, and are
thus cold (blue). The three subsequent events must take place once the first
two events have occurred, and are thus hot (red). The Sync construct forces
the Beep to occur following the second click.

(“monitor”, dashed). The Play-Engine variant supports both synchronous and

asynchronous messages; in PlayGo, all messages are synchronous.

Each LSC consists of lifelines and messages. LSCs may also contain vari-

able assignments and flow-control elements, such as loops and conditional ex-

ecution. Special lifeline represent the user and the environment. Conditional

guards, shown as elongated hexagons, specify statements that must be true in

order for the execution to continue. A special condition called SYNC, always

evaluates to true, and is used to synchronize lifelines.

The point where a lifeline intersects with a message, a condition, or any

other language construct is called a location. During execution, lifelines pro-

ceed along their locations in descending vertical order. The collection of all

current lifeline locations in an LSC, called a cut, is the equivalent of a program

counter in traditional code.

The execution of an LSC consists of a series of events, such as message

passing or condition evaluations. An event is considered enabled when all

of its preconditions have been met — involved lifelines have arrived at their

respective locations, variables have been bound, etc. At runtime, the LSC
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engine repeatedly selects an enabled event for execution. Lifelines then move

to their next locations, and the chart’s cut is updated.

The system avoids the execution of forbidden events whenever possible.

Forbidden events can be specified in a number of ways. If a scenario of events

ends in a hot false condition, it is considered forbidden. When an LSC is

“strict”, all of the events that appear in it but are not enabled by its cut

are forbidden. Finally, the Play-Engine variant allows, in some designated

circumstances, for the tagging of individual events as forbidden. But if a

forbidden event is nevertheless executed, then an exception, called violation,

occurs.

LSC is an interesting language with which to demonstrate our proposed

approach, since it is a real-world diagrammatic language with non-trivial se-

mantics. Additionally, it has multiple semantic variants, which allows us to

mix and match the semantics of specific constructs.

This chapter focuses on the operational semantics of a single LSC, and on

a subset of its language constructs. A criteria for the selection of the construct

subset was that it contained examples for all construct types, and thus could

be extended intuitively.

5.4 A Visual Dictionary for LSC

In this section, we present a visual dictionary listing the syntactic query and

BP-mapping for each LSC construct. Query matches are highlighted with a

yellow background. For example, in the Sync definition (Subsection 5.4.2),

the SYNC hexagon and the intersection of its upper edge are matched, and

are labeled snc and l1 to ln for the purpose of the BP-mapper pseudo-code

that follows. The CABs that compose the BP-mapping for the construct

matched by each query appear after the query’s diagram. Re-used CABs

are referred to by name, and are listed at Subsection 5.4.11. This graphical

representation of the queries, which may allow for the intuitive specification

of language constructs, is an idea for future implementations. In the current

implementation, we use a textual query language; the graphical representation
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is compiled manually, for the sake of readability.

All CABs exit when an exit event from their parent chart is triggered. This

is done using the BP idiom of interrupting events : b-threads terminate when

an event, which is a member of their interrupting event set, is triggered (see

Subsection 3.2.1).

BP allows blocking and waiting for abstract sets of events. The model

in this chapter uses two such event sets: VisibleEvents, which contains all

the messages passed; and ExitEvents(chart), which contains all the events

signaling the execution termination of a chart or a subchart.

Code listings in this chapter serve both as an implementation and as a

specification. Thus, we invite the reader to read them as both imperative and

declarative. As an imperative code, bp.sync(waitFor:E, block:VisibleEvents)

reads as “wait for E, and until then block all visible events”. But when read

declaratively, it says “No visible event can be selected until E has been se-

lected”.

5.4.1 Lifeline

A lifeline (see Figure 5.3 for visual representation) represents an object in a

chart. Lifeline CABs are responsible for advancing the chart’s cut. When

started by its parent chart, a lifelineCAB begins by waiting for its parent

chart’s start event (first bp.sync). It then advances along its locations, re-

questing repeatedly to enter and leave each one in turn. During execution, a

lifelineCAB blocks its parent chart from ending normally.

lifelineCABs do not enter subcharts. During the execution of subcharts,

such as Loop (Subsection 5.4.10), they wait for the subchart to be completed;

inside the subchart, new lifelineCABs act on their behalf. This is achieved

by the if statement at the top of the iteration loop.
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chartName

LiL1 Ln
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msg

msg
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msg

loop until *

chart

l1

l2
l3

l4

ln

name
chartName

Figure 5.3: Visual Dictionary: an LSC Lifeline

• Lifeline CAB:

1 lifelineCAB(chart , l1, . . . ln ):

2 bp.sync({ waitFor: ChartStart(chart )})

3 for ( i 2 [1..n] ) {

4 if ( li is at bottom of subchart ) {

5 bp.sync({ waitFor: Done(subchart),

6 block: ChartEnd(chart )})

7 }

8 bp.sync({ request: Enter(li),

9 block: {ChartEnd(chart )} [ VisibleEvents })

10 bp.sync({ request: Leave(li),

11 block: ChartEnd(chart )})

12 }

5.4.2 Sync

Visual representation: See part I of Figure 5.4.

• For each i 2 {1, . . . n} instantiate a BlockUntilCAB, blocking Enabled(snc)

until Enter(li) is selected.
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L2L1 Ln

l1 l2 ln
snc

L2L1 Ln

l1 l2 ln
cnd

L2L1 Ln

l1 l2 ln
asn

aVar=anExpr(v1,..vm) condition(v1,..vm)

L2L1 Ln

l1 l2 ln
cnd

condition(v1,..vm)

var expr

SYNC

I.

II.

III.

IV.

Figure 5.4: Visual dictionary: Synchronization constructs. (I) SYNC, (II)
Assignment, (III) Cold Condition, (IV) Hot Condition

• For each i 2 {1, . . . n} instantiate a BlockUntilCAB, blocking Leave(li)

until snc is selected.

• Instantiate the following CAB:

1 syncCAB(snc):

2 bp.sync({ request:Enabled(snc), block:Sync(snc )})

3 bp.sync({ request:Sync(snc), block:VisibleEvents })

This CAB enforces the SYNC to be enabled before it is triggered. By

blocking VisibleEvents in the second bp.sync, this CAB ensures that

once enabled, the SYNC will be triggered prior to any visible event.

5.4.3 Assignment

Visual representation: See part II of Figure 5.4. Like SYNCs, Assignments

are synchronization points for participating lifelines. Additionally, they may

require that values are bound.

• For each i 2 1, ..n instantiate a BlockUntilCAB with parameters Enabled(asn)

and Enter(li).
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• For each i 2 1, ..n instantiate a BlockUntilCAB with parameters Leave(li)

and Assignment(asn).

• For each i 2 1, ..m. instantiate a BlockUntilCAB with parameters Enabled(asn)

and Bound(vi).

• Instantiate a single assignmentCAB (below) with the matched parameters.

1 assignmentCAB( asn , l1, . . . ln ):

2 bp.sync({ request: Enabled(asn), block: Assignment(asn )})

3 value = evaluate(expr)

4 bp.sync({ request: Bound(var , value), block: VisibleEvents })

5 bp.sync({ request: Assignment(asn), block: VisibleEvents })

The assignmentCAB forces the assignment event to be enabled before it

is triggered. Additionally, this CAB binds the variables assigned to it in

the original LSC chart, by evaluating the expression in the assignment

construct and publishing the result in an event. This requirement, that

assignments occur as early as possible after being enabled, is enforced

by this CAB blocking VisibleEvents in the latter two bp.syncs.

5.4.4 Cold Condition

Visual representation: See part III of Figure 5.4.

• For i 2 {1..n}, instantiate a BlockUntilCAB, blocking Enabled(cnd) until

Enter(li) is selected.

• For i 2 {1..n}, instantiate a BlockUntilCAB, blocking Leave(li) until

Condition(cnd) is selected.

• Instantiate a single coldConditionCAB (below) with the matched param-

eters.

1 coldConditionCAB( cnd ):

2 bp.sync({ request:Enabled(cnd), block:Condition(cnd)})

3 if ( evaluate(cnd) ): resultEvent = Condition(cnd)

4 else: resultEvent = ColdViolation(cnd)

5 bp.sync({ request:resultEvent , block:VisibleEvents })
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5.4.5 Hot Condition

Visual representation: See part IV of Figure 5.4.

• Same as cold condition (Subsection 5.4.4), except that hotConditionCAB

requests a HotViolation event:

1 hotConditionCAB( cnd ):

2 bp.sync({ request:Enabled(cnd), block:Condition(cnd)})

3 if ( evaluate(cnd) ): resultEvent = Condition(cnd)

4 else: resultEvent = HotViolation(cnd)

5 bp.sync({ request:resultEvent , block:VisibleEvents })

Messages share a number of aspects with conditions and assignments. They

require participating b-threads to synchronize, and may require that variables

are bound. Because these aspects are captured independently by CABs, mes-

sage definitions are mostly CABs that we have encountered in previous sec-

tions.

L1 L2

l1 l2
m(v1,..vn)

message(v1,..vn)

L1 L2

l1 l2
m(v1,..vn)

message(v1,..vn)

L1 L2

l1 l2
m(v1,..vn)

message(v1,..vn)

L1 L2

l1 l2
m(v1,..vn)

message(v1,..vn)

I.

II.

III.

IV.

Figure 5.5: Visual Dictionary: Message types. (I) Cold, executed message. (II)
Hot, Executed message. (III) Cold, monitored message. (IV) Hot, monitored
message.

5.4.6 Cold, Executed Message

Visual representation: See part I of Figure 5.5.
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• Instantiate two BlockUntilCABs, blocking Enabled(m) until Enter(li) is

selected (for i 2 {1, 2}). If the sender lifeline is also the receiver, it is

possible to omit one of these CABs.

• Instantiate two BlockUntilCABs, blocking Leave(li) for i 2 {1, 2} until

Message(m) is selected.

• For each variable v not a↵ected by m, instantiate a BlockUntilCAB, block-

ing Enabled(m) until Bound(v) is selected. These CABs prevent m from

being enabled until all of the variables that it depends upon are bound.

• For each variable v a↵ected (bound) by m, instantiate a BindFromCAB,

binding v when Message(m) is selected. These CABs announce the bind-

ing made by m for v.

• Instantiate a single ceMessageCAB (shown below):

1 ceMessageCAB(m):

2 bp.sync({ request:Enabled(m), block:Message(m)})

3 bp.sync({ request:Message(m)})

This CAB forces the message passing event to be enabled prior to being

triggered. The concept of an event being “enabled” is part of the LSC

language, and so Enabled(m) serves as a source semantic event.

5.4.7 Hot, Executed Message

Visual representation: See part II of Figure 5.5. A “hot” message must be

executed once it has been enabled (unlike a “cold” message, which may or

may not occur). This di↵erence in behavior is achieved by adding a single

CAB, as shown below. The other CABs are reused.

• Same CABs as for the cold, executed message.

• A TriggeredBlockUntilCAB, where the trigger event is Enabled(m), after

which the event set ExitEvents(chart) is blocked until Message(m) is

selected.
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5.4.8 Cold, Monitored Message

Visual representation: See part III of Figure 5.5.

• Except for the ceMessageCAB, all CABs used for the cold, executed mes-

sage (Subsection 5.4.6) are reused “as is” for the cold, monitored one.

• Instantiate a single cmMessageCAB (below). This CAB is identical to the

ceMessageCAB, except for the second bp.sync call which waits for the

message passing event rather than requests it.

1 cmMessageCAB(m):

2 bp.sync({ request:Enabled(m), block:Message(m)})

3 bp.sync({ waitFor:Message(m)})

5.4.9 Hot, Monitored Message

Visual representation: See part IV of Figure 5.5.

• Same CABs as for the cold, monitored message.

• A TriggeredBlockUntilCAB, as for the hot, executed message.

5.4.10 Loop

Visual representation: See part I of Figure 5.6. An LSC loop is a type of

subchart: It can contain any LSC construct, including other loops, but uses

the lifelines of its parent chart. A cold violation of a loop will terminate it,

but will not terminate its parent chart.

For every loop construct detected by querying an LSC chart, instantiate

the following CABs:

• BlockUntilCAB, waiting for Leave(li,1), while blocking Enabled(loop).

• A loopCAB (see below) with the matched parameters.
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Figure 5.6: Visual Dictionary: Sub-charts. (I) Loop. (II) Alternatives.

1 loopCAB( loop , ctrl ):

2 bp.sync({ request: Enabled(loop )})

3 loopIteration(loop , ctrl)

4 bp.sync({ request:Done(loop), block:VisibleEvents })

5

6 loopIteration( loop , ctrl ):

7 if ( ctrl > 0 ):

8 startCABs(loop)

9 bp.sync(request:ChartStart(loop),block:VisibleEvents)

10 event = bp.sync({ request:ChartEnd(loop),

11 waitFor:ExitEvents(loop )})

12 if ( event is ChartEnd(loop) ):

13 loopIteration(ctrl -1, loop)

A loopCAB commences by requesting that its loop be enabled. It then

runs the loop repeatedly, using the sub-routine loopIteration. After its final

iteration, it announces that the loop is completed by requesting a Done(loop)

event. Blocking VisibleEvents ensures that once the loop is completed, it

is declared as such before any message is passed. The loopIteration sub-

routine starts by checking whether a new iteration is required. If so, it creates

the CABs for the loop subchart, and requests that its start event be fired. This
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event is a signal for the lifeline CABs of the subchart to start advancing along

their location list. When the subchart execution is completed, loopIteration

checks whether the subchart ran to completion. If so, another iteration is

attempted1. While the loop construct executes, the lifelines of the parent

chart waitFor it to end before entering their next location, below the chart.

5.4.10.1 Alternatives

Visual representation: See part II of Figure 5.6. Alternatives, the LSC equiv-

alent of an if-then-else or switch statement, is another type of a subchart.

As with loops, it is a fully recursive construct, and can contain instances of

itself as well as any other construct.

• For each of the n participating lifelines, a BlockUntilCAB with parame-

ters Enabled(altr) and Leave(li,1) (where i 2 [1..n]).

• A single alternativesCAB (listed below).

1 alternativesCAB(altr , l1, . . . ln, expr1, . . . exprm, sub1, . . . subm, subelse ):

2 bp.sync({ request: Enabled(altr )})

3 if (subelse 6= ?):

4 toExecute = subelse
5 else:

6 toExecute = ?;

7

8 for ( i 2 [1..m] ):

9 if ( evaluate(expri) ):

10 toExecute = subi
11 break

12

13 if ( toExecute 6= ? ):

14 startCABs(toExecute)

15 bp.sync({ request: ChartStart(toExecute), block: VisibleEvents })

16 bp.sync({ request: ChartEnd(toExecute),

17 waitFor: ExitEvents(toExecute )})

18

19 bp.sync({ request: Done(altr), block: VisibleEvents })

1
For the special case of control value *, meaning an unbounded amount of iterations, we

define *-1=*.
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The alternativesCAB starts in the usual manner, requesting that its con-

struct is enabled. Once enabled, the alternativesCAB selects the subchart

to execute, by evaluating the boolean expression guarding each subchart and

finding the first expression that evaluates to true. If it does not find any

such expression, then the CAB defaults to the subelse chart, if present. If a

subchart is selected, then the alternativesCAB starts its CABs, requests its

start event (which, when selected, activates the subchart’s lifelines) and then

waitFor it to terminate. Finally, the alternativesCAB announces that the

construct has completed execution by requesting a Done event.

5.4.11 Reused CABs

The following CABs, used by multiple definitions above, capture common as-

pects of the LSC language constructs. The fact that we can capture common

construct aspects allows for more than just code re-use. It also formally defines

underlying construct commonalities — which, in turn, allows for comprehen-

sion reuse, a desirable trait when presenting a language (or any other complex

set of definitions) to a new audience.

5.4.11.1 BlockUntilCAB

This CAB blocks an event until another one is triggered. Used in all constructs

to enforce correct execution order, the code for this CAB consists of a single

bp.sync call.

1 blockUntilCAB( blocked , waitedFor ):

2 bp.sync({ waitFor:waitedFor , block:blocked })

5.4.11.2 TriggeredBlockUntilCAB

This CAB waits for an event, then blocks a set of events until another event

is selected.

1 triggeredBlockUntilCAB(trigger , blocked , waitedFor ):

2 bp.sync({ waitFor:trigger })

3 bp.sync({ waitFor:waitedFor , block:blocked })
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5.4.11.3 BindFromCAB

This CAB is responsible for binding a single variable to a value extracted from

a message. It waits for the message to be sent, then requests a binding event

announcing the new binding.

1 bindFromCAB( message , variable ):

2 selected = bp.sync({ waitFor:message })

3 value = selected.message.get(variable)

4 bp.sync({ request:Bound(variable , value), block:VisibleEvents })

5.5 Implementation

To test our approach, we implemented an LSC runtime engine. The engine

takes an XML description of an LSC as its input. It then uses XQuery[96] to

both query the source code and to generate BP code. The BP code is then

executed normally, using BPjs.

Input LSCs are described using straightforward XML-based format. Sim-

ilar to a verbal description of an LSC, the format includes nodes such as

<lifeline> and <message>. Figure 5.7 shows a simple LSC and its XML

representation, in the format we used in this project.

Queries and BP-Mappers Queries regarding the XML files are done us-

ing XQuery. Here, we use the BaseX[37] query engine, which implements the

XQuery 3.1 W3C standard [96] without any modifications. As LSCs contain re-

cursive structures, the XQuery program consists of a top-level recursive query,

which is used to query the top-level chart. It then recurses down the chart

containment hierarchy, querying over each construct it finds and mapping it

to BP code. Construct queries look very much like the construct definitions

listed above, phrased in XQuery (see Listing 5.1).

Using this engine, LSCs described using our XML format can be directly

executed. The code is available at [8].
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<lsc id="lscWithLoop" name=“Sample Loop”>
  <lifeline name="A" location-count="3">
    <subchart-bottom subchart-id="theLoop" loc="3"/>
  </lifeline>
  <lifeline name="B" location-count="3">
    <subchart-bottom subchart-id="theLoop" loc="3"/>
  </lifeline>
  <message from="A" fromloc="1" to="B" toloc="1" 
           content="hello" temperature=“cold” exec=“monitor” />
  <loop id="theLoop" control="3" locations="A@2,B@2">
    <lifeline name="A" location-count="1" />
    <lifeline name="B" location-count="1" />
    <message from="B" fromloc="1" to="A" toloc="1" 
             content="world" temperature="hot" exec="execute" />
  </loop>
</lsc>

Figure 5.7: A simple LSC with a loop, and its XML representation.

Listing 5.1: XQuery code for detecting <message> nodes and generating the
BPjs-based Javascript code that implements them. Compare this to the def-
inition of cold, executed message (Subsection 5.4.6). Methods called by this
query, such as lsc:messageCAB, return Javascript code.
1 declare function local:message( $msg as node() ) as xs:string {
2 (: Generate the JS for the passed message XML node. :)
3 let $fromLoc := lsc:loc($msg/@from , $msg/@fromloc)
4 let $toLoc := lsc:loc($msg/@to , $msg/@toloc)
5 let $content := $msg/@content
6 let $msgEvent := lsc:Message($fromLoc , $toLoc , $content)
7 let $msgEnabled := lsc:Enabled($msgEvent)
8 let $chartId := lsc:chartId($msg /..)
9 return string -join((

10 lsc:blockUntilCAB( $msgEnabled , lsc:Enter($fromLoc , $chartId) ),
11 lsc:blockUntilCAB( $msgEnabled , lsc:Enter($toLoc , $chartId) ),
12 lsc:messageCAB( $fromLoc , $toLoc , $content ),
13 lsc:blockUntilCAB( lsc:Leave($fromLoc , $chartId), $msgEvent ),
14 lsc:blockUntilCAB( lsc:Leave($toLoc , $chartId), $msgEvent )
15 ), $newLine )
16 };
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5.6 Semantic Variations

We will now demonstrate how the proposed mechanism allows for adding,

removing, and altering the semantics of each construct independently, along

with adding new constructs or removing them altogether.

5.6.1 Asynchronous Message

L1

message(v1,..vn)
l1 l2

m(v1,..vn)

L2

The messages described in Section 5.4 are synchronous. We now add an asyn-

chronous message, which will allow the sending lifeline to advance beyond the

send location without having to wait for the receiving lifeline to receive the

message. This type of message only exists in the Play-Engine variant; it is not

supported by PlayGo.

Instantiate the following CABs:

• BlockUntilCAB, blocking Enabled(m), waiting for Enter(l1).

• BlockUntilCAB, blocking Received(m), waiting for Enter(l2).

• BlockUntilCABs, blocking Received(m), waiting for Sent(m).

• BlockUntilCAB, blocking Leave(l1), waiting for Sent(m).

• BlockUntilCAB, blocking Leave(l2), waiting for Received(m).

• For each variable v not a↵ected by m, a BlockUntilCAB, blocking Enabled(m),

waiting for Bound(v).

• For each variable v a↵ected (bound) by m, a BindFromCAB, blocking Sent(m),

waiting for v.
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• A single asyncMessageSendCAB (shown below), forcing the message send-

ing event to be enabled prior to being triggered.

1 asyncMessageSendCAB(m):

2 bp.sync({ request:Enabled(m), block:Sent(m)})

3 bp.sync({ request:Sent(m)})

• A single asyncMessageReceiveCAB, requesting that the message is re-

ceived.

1 asyncMessageReceiveCAB(m):

2 bp.sync({ request:Received(m)})

As there are blockUntilCABs blocking the message from being received

prior to being enabled, fully bound, sent, and having its receiving lifeline in

location to receive it, the asyncMessageReceiveCAB does not need to handle

these preconditions and their possible orderings.

The mapping for asynchronous messages can be used either as a replace-

ment for the synchronous message mapping, making all messages asynchronous

(e.g. in a “what if we made all messages asynchronous” scenario), or as a map-

ping for a new type of specification idiom.

5.6.2 Strict vs. Tolerant Modes

An LSC can be either strict or tolerant. A Strict LSC is violated if an event

that appears in it occurs when it is not enabled. An event of this nature will

not cause a violation in a tolerant LSC. In PlayGO, all of LSCs are strict. In

Play-Engine, both modes are allowed. Strictness can be imposed by adding

b-threads to the mapping of a chart, one for each message appearing in the

LSC.

Each b-thread is initialized with the events that are present in its respective

chart. The function cut(chart) returns the cut of chart, which is the set of

all of the locations that its lifelines are currently located in. Obtaining the

cut of a given chart does not require direct communication with that chart or

its lifelines — the cut can be obtained by waiting for the Enter events of that

chart’s locations. A cut is considered HOT if at least one of its locations is HOT.
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Listing 5.2: Enstrictor, a b-thread that makes an LSC strict
1 chartEvents = events_of( chart )
2 nonBlocked = ;
3 repeat:
4 event = bp.sync({ waitFor: AllEvents ,
5 block: chartEvents \ nonBlocked })
6 if ( event is Enabled(x) ):
7 nonBlocked = nonBlocked [ {x}
8 else if ( event 2 nonBlocked ):
9 nonBlocked = nonBlocked \ {last_event}

10 else:
11 if ( isHot(cut(chart )) ):
12 bp.sync({ request:HotViolation , block:VisibleEvents })
13 else:
14 bp.sync({ request:ColdViolation , block:VisibleEvents })

5.6.3 Adding a Type System by Blocking

The LSC implementation presented has used dynamic typing so far, since it

does not verify that the receiving lifelines are implementing the messages they

have received. Using event blocking, we can block messages unimplemented

by their receiver in a purely incremental manner, by adding a b-thread.

BP allows b-threads to block sets of events by passing a predicate to

bp.sync. InvalidMessages, defined in Listing 5.3, is a predicate valid for

all messages unimplemented by their receiver. In order to prevent these mes-

sages, the typeSystemBThread can be added to the system.

Listing 5.3: Type System Event Set and BThread. This code assumes each

lifeline has a list of defined operations
1 InvalidMessages( msgEvent ):

2 return

3 msgEvent.message 62 msgEvent.receiver.definedMessages

4

5 typeSystemBThread:

6 bp.sync({ block: InvalidMessages })

Traditionally, when typing constraints are imposed on a program, they are

imposed across the program as a whole. Our proposed approach, of imposing

typing constraints, o↵ers a greater degree of flexibility, in that it can be lifted

or imposed without making changes to the rest of the code. It can be limited to

parts of the code by altering the predicate; alternatively, it can pass the invalid
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method call to a special handler equipped to perform any arbitrary operation.

This is similar to SmallTalk’s doesNotUnderstand: method, which is invoked

when an object receives a message it does not have an implementation for.

5.7 Related Work

The notion of describing semantics by mapping one domain onto another is

not new. AToM3 [70], for example, a tool for creating and transforming meta-

models, uses graph-based meta-models and transformations to achieve this

objective. UML [88] has its own metamodel, used to describe its diagrams.

Executable UML [86, 92] adds executable semantics to a subset of UML’s

diagrams. Our work di↵ers from both in that it does not use a meta-model

per se — the queries extract data from the source language, but the result is

presented in the source language, and not in a metamodel.

In [71], Latombe et. al. presented a way of coping with semantic variations

in domain specific modeling languages. Their method uses a 2-tier structure,

where the top tier lists all options according to a set of available semantics,

and the lower level selects the correct option according to the desired semantic

variant. Our approach di↵ers in that it uses changes in queries and mappers

to vary the semantics. Thus, options not available to the selected variant are

not generated.

Multiple semantic variants of the LSC language have developed over the

years. Cohen and Maoz [22] use a feature model (containing 19 features) in

order to consolidate them under a single, configurable semantic interpretation.

The solution presented there uses model transformation, taking an LSC speci-

fication and a semantic configuration, and generates an automaton that is later

analyzed using an external tool (e.g. GOAL). Our proposed approach is com-

parable, with the set of model queries and semantic mappers taking the role

of the feature model and translation algorithm, and the resultant b-program

replacing the generated automaton. Compared to our queries and semantic

mappers, feature models o↵er a more structured way of comparing semantic

variants. For the same reason, queries and mappers allow for more agility and
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experimentation, which are important features during language development.

This project was also partly motivated by [31]’s call for endowing the con-

ventions behind complex diagrams (biological ones, in the case of [31]) with

explicit formal semantics.

5.8 Conclusion

By querying the syntax of a diagrammatic language and mapping the result

to BP-based code, we can formally define the operational semantics of said

language. The resultant definition is executable, accessible to practitioners

who read code but are less familiar with state change formulae, and allows

the language developer to experiment with di↵erent semantics of language

constructs independently. We have demonstrated the proposed approach using

a subset of the LSC language, and presented a working tool based on this

definition.
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Chapter 6

BP Model Driven Engineering

The work described in this chapter was previously published in [35] and [5].

Model-Driven Engineering (MDE) is a well-known approach for building

software systems. A model is an abstraction of a system that one wishes to

study. It contains the system’s relevant aspects, omitting aspects irrelevant

for the study that the model was made for. As such, models facilitate commu-

nication between technical and non-technical stakeholders [25, 99]. Modeling

is used in many engineering domains, including Chemistry, Physics, and Eco-

nomics. In software design, modeling has been used since the late 1960s as a

tool to facilitate reasoning about behavior and correctness, beginning with re-

search by Floyd [30] and Hoare [59]. Models were subsequently used in design

and documentation, OMG’s Unified Modeling Language [88] being the most

prominent example.

While many modeling languages have formal semantics, practitioners often

think of them as generally helpful doodles, rather than as formal languages.

In [53], Harel calls this “the doodling phenomenon”. Other researchers have

advocated for embracing models with their full semantics as well (e.g. Seide-

witz [98] and Lee [72]).

In recent years, models have become more central to the software building

process, with new techniques and methodologies using models not only for

documentation, but also in execution and testing [99]. These practices are
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known as “Model-Driven Engineering (MDE)”. When using MDE, engineers

develop a system by creating an executable model that describes it, using

modeling languages such as SysML [56], or Umple [73]. Models are often

integrated with the rest of the system through code generation — the modeling

tool uses the model to generate code in an “ordinary” language (such as Java

or C#). The generated code is then compiled and packaged with the system,

like traditionally-developed code. Other integration methods have also been

explored; for example, LSC models developed in PlayGO [47] can be integrated

with ordinary Java code, using aspect-oriented programming [76, 77].

Model-driven engineering allows for describing the developed systems at a

higher level, as compared to regular code. It also allows for the simulation and

verification of certain model properties, which help detect requirement and

design issues at an early stage in the development process.

It is no surprise that the modeling language used in a given MDE project

can be crucial for that project’s success. A survey conducted by Whittle et al.

[101] found that the formal semantics and theoretical foundations of modeling

languages are key to their subsequent adoption, as well as their conformance

with human abstractions.

Because BP is well-founded, has clear semantics (see Sections 2.2 and 4.3),

and aligns well with human logic processes and thought [33], it is a natural

candidate for creating models in MDE setting. Other important properties

of BP include its executability, amenability to formal verification (see Chap-

ter 4), alignment with stated requirements, and developmental incremental-

ity (see Chapter 2). These properties allow engineers to translate behavioral

concerns from system requirements directly into operational software. This

translation further enables the straightforward tracing of bugs to specification

inconsistencies.

BP allows for incremental extensions and refinements, which makes it pos-

sible for system developers to begin the modeling process at an abstract level,

and to add implementation details later. It supports a trial-and-error style

development that is often essential for developing embedded software. Models

can integrate with traditional systems in multiple ways, including the afore-
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Figure 6.1: A b-program used as a model in Model-Driven Engineering. During
verification (left), the model is analyzed by a verifier. Additional b-threads
may be added for simulating the system environment, adding assumptions
in order to limit verification search space, and adding additional requirement
b-threads not already contained in the model. During runtime (right), the b-
program is put in a b-program runner, which serves as an adapter between the
model and an ordinary software system. The same b-program is used for both
runtime and verification, which eliminates the bugs that may emerge during
model translation.

mentioned aspects, and an Observer interface. Finally, code-based models are

inherently testable, and can be formally analyzed, e.g., by model checking.

During model testing and verification, BP’s incrementality can be used to

simulate a system’s environment, to formally take assumptions into account,

and to formally describe required system properties. Our proposed design for

embedding b-programs in traditional software systems allows the use of the

same model during both verification and runtime, thereby eliminating — by

design — the bugs and inconsistencies that might otherwise creep into the

system during a model translation process. Figure 6.1 shows a b-program

used as a model, during verification and runtime.

Not every program written using BP is a model. In particular, if b-

threads interact with their environment or with each other directly (rather

than through events), the b-program they partake in cannot be translated to

a transition system as described in Section 4.3. As a result, that b-program

cannot be formally analyzed or verified using the techniques presented in this
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work, and thus cannot be considered “a model” under the definitions we pro-

pose. Examples of such direct interaction include using shared memory struc-

tures (even those supporting concurrent access), or directly accessing external

resources such as a database or a file system.

For a b-program to be a model, it has to use “pure BP”: All its b-threads

must interact with each other and with their environment using events only.

When a b-thread has to interact with its environment, it should do so through

the b-program’s host program, with which it can communicate using events.

The host listens to events selected by the b-program and can take actions

according to these events. When a host program needs to send data to a

“pure” b-program, it can only do so by enqueuing events in its external event

queue. As an example, if a b-thread needs to access the contents of a file, it

can request a READ FILE event, and then wait for a FILE CONTENTS event. The

host would intercept the READ FILE event, read the file contents, wrap it in a

FILE CONTENTS event, and send it back to the b-program.

From an engineering perspective, the fact that not all b-programs are pure

by definition is a strong point for BP, as it allows software engineers to decide

if they want to program, model, or use a hybrid approach. This chapter

discusses the use of “pure” BP as a model in Model-Driven engineering, to

examine whether BP is usable under the constraints this purity imposes. This

examination is done through two examples: a simulated autonomous rover,

and a satellite.

This chapter is organized as follows: Section 6.1 presents a simulated au-

tonomous rover, designed using MDE with a BP model. Section 6.2 presents

a cube satellite designed and tested using MDE and BP. Section 6.3 considers

related research studies, and Section 6.4 presents our conclusions.

6.1 Tracking Rover Control

This section presents a solution to a challenge published by the 2018 edition of

MDETools workshop, which called for MDE-based implementations of control

software for a simulated rover. Said rover was to track another rover (“leader”)
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at a safe distance — not too far away, but not too close. The lead rover could

change direction and speed, and the tracking rover had to respond to these

changes, in order to remain within safe range1.

Our proposed model for the tracking rover’s control software is a b-program,

consisting of a set of b-threads, each corresponding to a specific requirement.

The model development process relies on BP’s incrementality: we start by

defining b-threads for specific requirements. Then, we refine the model, based

on results obtained from verification and trial and error.

We initially focus on these two requirements:

1. The rover has to follow the leader

2. The rover should always stay at a safe distance from the leader

Both requirements can generate instructions for the tracking rover’s wheels.

These requirements may conflict with one another; for example, when the

leading rover has steered to one side, and the tracking rover must both go

forward and turn in order to maintain its position. Listing 6.1 illustrates how

blocking can be used to integrate such competing requirements, when isolated

in separate b-threads.

The first line imports a Java package which abstracts from the interaction

between the scenario-based model and the (simulated) rover. Specifically, the

Java host application sends Telemetry events that carry the rovers’ teleme-

try data. The host also translates actuation events TURN LEFT, TURN RIGHT,

GO TO TARGET, and GoSlowGradient(power) into the commands sent to the

rovers’ wheels. Behavioral abstraction layers of this nature allow models to

separate key problem aspects from platform-specific technical details.

Line 3 defines an event set, that is used to wait for all Telemetry events.

Since these events di↵er in their data, a b-thread cannot list all of them indi-

vidually. Instead, it can wait for a set of events which satisfy a given predicate.

1
The full challenge can be found here:

https://mdetools.github.io/mdetools18/challengeproblem.html.
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Listing 6.1: Follower Rover Control program in BPjs (abbreviated for brevity)
1 importPackage(Packages.il.ac.bgu.cs.bp.leaderfollower.events );
2

3 var AnyTelemetry = bp.EventSet("Telemetries", function (e) {
4 return e instanceof Telemetry;
5 });
6

7 var esFBwardEvents = bp.EventSet("FBwardEvents", function (e) {...});
8

9 bp.registerBThread("Go", function () {
10 while (true) {
11 bp.sync({ waitFor: AnyTelemetry });
12 bp.sync({ request: StaticEvents.GO_TO_TARGET });
13 }});
14

15 bp.registerBThread("SpinToTarget", function () {
16 while (true) {
17 var et = bp.sync({ waitFor: AnyTelemetry });
18 var degToTarget = compDegToTarget(et.LeadX , et.LeadY ,
19 et.RovX , et.RovY , et.Compass );
20 while (Math.abs(degToTarget) > 4) { // must correct rover orientation
21 if (degToTarget > 0) {
22 bp.sync({ request:StaticEvents.TURN_RIGHT , block:esFBwardEvents });
23 } else {
24 bp.sync({ request:StaticEvents.TURN_LEFT , block:esFBwardEvents });
25 }
26 et = bp.sync({ waitFor: AnyTelemetry , block: esFBwardEvents });
27 degToTarget = compDegToTarget(et.LeadX , et.LeadY ,
28 et.RovX , et.RovY , et.Compass );
29 }}});
30

31 var tooClose = 12.5;
32 var tooFar = 15;
33

34 bp.registerBThread("NotTooClose", function () {
35 while (true) {
36 var lastTelemetry = bp.sync({ waitFor: AnyTelemetry });
37 while (lastTelemetry.Dist < tooFar) {
38 if (lastTelemetry.Dist >= tooClose -(tooFar -tooClose )) {
39 var slowDownPower=Math.round (( lastTelemetry.Dist -tooClose )/
40 (tooFar -tooClose )*100);
41 bp.sync({ waitFor: [StaticEvents.TURN_RIGHT ,StaticEvents.TURN_LEFT],
42 request: GoSlowGradient(slowDownPower),
43 block: StaticEvents.GO_TO_TARGET });
44 } else {
45 bp.sync({ waitFor: [StaticEvents.TURN_RIGHT ,StaticEvents.TURN_LEFT],
46 request: GoSlowGradient (-100),
47 block: StaticEvents.GO_TO_TARGET });
48 }
49 lastTelemetry = bp.sync({ waitFor: AnyTelemetry ,
50 block: StaticEvents.GO_TO_TARGET });
51 }}});
52

53 function compDegToTarget(xL , yL , xR , yR , CompassDeg) {...}
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Using BPjs’ bp.EventSet, the predicate returns true if and only if the

event e is an instance of class Telemetry. This technique is also used in line

7, for waiting for all forward/backwards movement events.

Lines 9 to 13 are a b-thread modeling the requirement that the tracking

rover should drive forward, to follow the leader. It is a two-step scenario: it

waits for a telemetry event, and reacts by requesting the GO_TO_TARGET event.

Lines 15 to 27 are a b-thread for the requirement that the tracking rover

orient itself in relation to the leader before driving towards it. The scenario

uses a helper function compDegToTarget, which computes the angle in degrees

between the tracker and the leader. If the value of angle falls outside a defined

range, the b-thread requests the event of turning right (or left), while blocking

all forward/backward movement events. The abstraction layer changes wheel

speed to actuate the turn, and the orientation is checked again. When the angle

falls within the allowed range, i.e., the tracker is oriented in the direction of

the leader, forward movement is no longer blocked. Note that the b-thread is

modeled so as to be as self-contained as possible.

Process-wise, we started by running the two b-threads described above, to

see how they performed. After a short debug process, we realized that these

b-threads were not enough. While the tracker did indeed follow the leader, it

sometimes got too close to it, violating a requirement that had not yet been

implemented. We could, of course, adjust the existing b-threads such that the

GO_TO_TARGET event could not be requested if the distance between the tracker

the leader was below a certain threshold — which is how such issues are usually

dealt with in standard modeling and programming languages. However, as we

were using SBM, and this could be viewed as a separate behavioral concern, we

decided instead to implement this requirement in a separate b-thread, called

NotTooClose. This b-thread, in lines 34 to 51, is an “anti-scenario” — a b-

thread that uses the BP event blocking idiom to forbid the GO_TO_TARGET event

(which means traveling at maximum speed) if the distance of the tracker from

the leader is too short. Instead of the blocked event, this b-thread uses feedback

control logic to request a GoSlowGradient(power) event, which adjusts wheel

speed in relation to the tracker’s distance from the leader. The parameter
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power can be positive or negative, allowing the tracker to drive in reverse if

necessary.

B-thread NotTooClose uses the break-upon idiom (see Section 5.4) to en-

sure that the GoSlowGradient events it requests are based on current data.

Section 6.1.1 presents a way for automatically verifying that this is indeed the

case.

While small and simple, this model already demonstrates how blocking can

be used to integrate positive and negative specifications if new requirements

emerge during the development process. As demonstrated, this is especially

useful for command and control software, where typical trial-and-error creates

new requirements, which are better implemented in separate b-threads for

maintenance and readability purposes.

The code for the rover is available at [97]. A video of the model in action

is available online at https://vimeo.com/299312428.

6.1.1 Rover Formal Analysis

A key advantage of SBM is that the models it creates are amenable to formal

analysis, which can reveal conflicts and omissions between system requirements

and design decisions. Such analysis can be performed from the earliest stages

of prototype development.

Model analysis is enabled mainly by abstracting away sensors and actua-

tors, and focusing on scenarios that represent basic requirements (as well as

exceptions and refinements thereof), and on the interaction and composition of

these scenarios. During verification, a b-program cannot interact with its en-

vironment, since its execution is non-linear, and the environment (which is not

aware of the verification) will not be synchronized with the verified program

once backtracking begins. However, relevant aspects of environment behavior

can be modeled as additional scenarios. This also presents an opportunity

for abstracting much of the detail of the real-world environment. Such envi-

ronment scenarios can also monitor real environment behavior at run time,

and give advance warning of situations that the system has not formally been
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prepared for.

We performed model verification using BPjs’ built-in verifier (see Chap-

ter 4). We added environment b-threads that simulated a leader moving, the

generated telemetries based on geometry alone (that is, we only took into con-

sideration wheel power and orientation, not friction or elevation). We also

added b-threads responsible for raising false assertions when safety require-

ments are violated. Because this type of problem — two rovers driving on

an infinite plane — has a state space of infinite size, we limited the depth

of the DFS state space exploration to 500 events. Without this limitation,

the verifier would follow a single program execution; because it uses DFS for

traversing the b-program state-space, this algorithm would lead it infinitely

deeper into the simulation b-program state-space graph.

This simple setting allowed us to detect, for example, that if the tracker’s

speed cannot exceed 120% of the leader’s speed, then the distance between

the vehicles will extend beyond the threshold. We also detected the absence

of the “break upon” part, as discussed above, by adding a b-thread that waits

for GoSlowGradient events and confirms that their power field is consistent

with the latest telemetry data. The result was an automatically generated

trace of the system, with a GoSlowGradient appearing at a wrong time. We

used this trace to generate Figure 6.22. After fixing NotTooClose (by having

it wait-for turn events, as described above), we used verification to prove that

the problem had indeed been solved.

6.1.2 Discussion and Conclusion

The follower rover use-case presented here demonstrates the advantages of

using BP for model-driven engineering: the intuitiveness of b-threads, align-

ment of b-threads with requirements and design documents, weaving-in of

new b-threads with little or no change to existing ones, formal verification

capabilities, and direct executability of the model, without transformation or

synthesis. These advantages carry over to SBP in general [35].

2
Figure was generated by processing the event trace to GraphViz’s Dot language. An-

notations and enlargements were added manually.
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Figure 6.2: A race condition caught by verification. The leader rover (black
ovals) moves forward at a steady pace. The faulty tracker rover (blue ovals)
follows it. To align itself behind the leader, the tracker must move closer
to it, and change its orientation. It starts by turning (frame A), and then
moves forward at full speed. When it gets close enough to the leader (frame
B), it must both slow down and turn. At this point, the NotTooClose b-
thread requests a GoSlowGradient event, while the SpinToTarget b-thread
requests a turn. The b-program selects the turn event first. By the time the
GoSlowGradient event is selected, the leader is further away from the rover,
and so the power field of the GoSlowGradient event is smaller than expected
(frame C).
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The model presented here relies on blocking-based scenario composition.

The Go scenario is a default behavior, and causes the tracker rover to drive

forward at full speed. This behavior is blocked when there are overriding con-

cerns. The SpinToTarget b-thread blocks it when the tracker is not oriented

in the direction of the leader; the NotTooClose b-thread blocks it when the

tracker is too close to the leader, and needs to slow down. Other composition

styles are also possible. For example, a wait-for-based composition may have

a b-thread wait for a telemetry event, determine whether the rover needs to

turn or go forward, and publish an event accordingly. Two other b-threads

may wait for forward and turn events, calculate the required amount (wheel

power and degrees, respectively), and request events that instruct the wheels

to act accordingly (Greenyer et al. [35] presents a similar model, implemented

using IOSM-K). These composition styles are not mutually exclusive.

6.2 On-Board Satellite Control and Testing

We now turn to another example of model-driven engineering using BP (and

BPjs) — an on-board control software for a satellite. But first, some back-

ground on space missions.

A common method of increasing the e�ciency and productivity of satel-

lites and other space missions is to make them more autonomous, by improving

their on-board control and troubleshooting capabilities. As a result, these ma-

chines can be expected to only become more software intensive. Since the

1990s, NASA and others have been exploring artificial intelligence approaches

and algorithms for ground control systems and for avionics. The goal of these

examinations was to automate aspects of space missions, in order to reduce

the number of experts needed to control and coordinate missions, as well as to

improve system performance and resilience. This was followed by research into

agent-based methods and control theory concepts, directed towards improving

self-management and survivability in the harsh environments in which space

missions operate. While software-based systems responsible for complex deci-

sions are common in other fields, introducing these advanced features to the
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field of space missions is a challenge, because space systems must maintain

an uncompromisingly high standard of reliability. In a sense, general soft-

ware engineering is moving away from the culture that defines space-mission

software development. While techniques such as agile programming, adaptive

planning, evolutionary development, early delivery, and continuous integra-

tion have many benefits, they cannot be directly implemented in the context

of space mission software development, due to the strict safety and robustness

requirements expected from space software.

The strict requirement for safety and robustness has nudged the space in-

dustry into relying heavily on systems with “heritage” — that is, systems that

have already been successfully deployed in space missions. Understandable

though this may, this approach slows down system development progress, be-

cause new technologies must be introduced into secondary components, and be

launched into space, before they can be used in primary components. However,

we have seen that BP can be used to create reactive systems whose robustness

and safety can be verified. Thus, using BP for developing space software can

accelerate and modernize space software engineering, and without sacrificing

the important safety quotient.

In this section, we propose a novel approach to satellite-software devel-

opment that allows for modularity and formal verification. These, in turn,

enable safer and more robust satellite software. Specifically, we propose to

use scenario-based programming, where software components (modules) repre-

sent di↵erent aspects of mission and housekeeping scenarios and anti-scenarios

(things that must not happen). We present examples of how specifications for

flight management can be translated into code artifacts, representing them in

a direct and intuitive way. We support this approach by presenting a devel-

opment environment we are designing for creating on-board mission software.

Our environment includes an automatic model-checking tool for verifying the

developed software against a formal specification. Unlike traditional testing,

this tool allows for an exhaustive analysis of the code, producing formal guar-

antees of quality. Moreover, the system can generate complex realistic test

scenarios, by composing simple ones. This improves testing e�ciency and cov-
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erage by increasing the amount of system states being tested. Subsection 6.2.2

demonstrates verification on specific parts of a model, on specific logical layers

of an application, and on an entire model at a specific abstraction level. This

allows for the introduction of modular design processes, where modules, layers,

and aspects of behavior can be tested and verified in isolation as soon as their

code is ready.

Additionally, we describe a “hybrid laboratory” for the advanced testing

of mission software. Our laboratory uses a novel approach, which allows for

the automatic generation of test scenarios using scenario-based programming.

While the examples we provide here have been simplified for the purpose of this

section, our group at Ben-Gurion University is presently developing a complete

on-board mission software suite for a satellite. The experience that has been

yielded by this project shows that the development environment, along with

the hybrid laboratory, provide a viable tool-set for the development of reliable

satellite software.

6.2.1 Managing Satellite Energy and Altitude Using BP

We will now demonstrate how BPjs can be used for developing software mod-

ules to manage two satellite sub-systems. These modules are part of an on-

board satellite control software suite that we are currently in the process of

developing. When completed, this software will control all aspects of a satellite

in orbit, including interaction with its sub-systems, and mission and mainte-

nance tasks.

The first subsystem is EPS (Electric Power System). For this example, we

assume that our EPS can switch between three operational modes: good, low,

and critical, depending on the battery voltage. The second subsystem is ADCS

(Attitude Determination and Control System); again, we assume it can switch

between three attitude control modes:

1. detumbling: used for reducing angular rates, usually after deployment of

the satellite

2. sun pointing: used for pointing the satellite’s solar panels towards the
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sun, in order to charge its batteries

3. payload pointing: used for pointing the satellite’s payload toward a de-

sired set point

The ADCS is activated when a payload pass is scheduled. For this example,

we assume that both sun pointing and payload pointing require low angular

speed rates to be active. We also take into account the fact that both the EPS

and ADCS have dedicated hardware, responsible for low-level requirements

(e.g., control of actuators and sensors), and that the on-board software we are

focusing on sends only high-level commands (e.g., switch to operational mode

‘X’). Assuming this system architecture, the on-board computer possesses all

the necessary cross-system knowledge, and is thus expected to make the cross-

system decisions.

Our on-board b-program software has a set of dedicated b-threads for each

sub-system, implementing its control logic. This logic is based on data from

actual satellite missions, such as [24, 95]. The program, as well as additional

documentation, are available at [4].

6.2.1.1 The EPS

The EPS logic is specified by the b-thread presented in Listing 6.2. We initially

wait for an EPS telemetry event, containing current telemetry received from

the EPS board. In this example, we assume that this includes the battery

voltage and the current EPS mode. According to the battery voltage field in

the EPS telemetry, an initial EPS mode is requested using the setEPSMode

event. After this initialization, each time an EPS telemetry is received (i.e., an

EPSTelemetry event is triggered), this b-thread requests an EPS-mode change

based on the battery’s current voltage.

The code in Listing 6.2 avoids stale requests that rely on old telemetries

by using the break-upon idiom (see Section 5.4): whenever it requests an

EPS-mode change, it also waits for EPS-telemetry events. If a new telemetry

arrives before the set-mode request has been granted (that is, an EPSTelemetry

event is selected by the b-program before the requested setEPSMode event has
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been),the set-mode request is cancelled and the b-thread has a chance to re-

evaluate it. The same technique was used by the NotTooClose b-thread in the

tracker rover examples (Section 6.1).

6.2.1.2 The ADCS

The ADCS logic is specified by the b-thread presented in Listing 6.3. It

is initialized by requesting a SetADCSModeDetumbling event. Each time an

ADCSTelemetry event is selected, the appropriate SetADCSMode event, based

on the current ADCS mode, the current angular rate, and on whether the

satellite is performing an active pass or not. This b-thread, too, avoids stale

set requests by waiting for telemetry events while requesting ADCS changes.

6.2.1.3 A Cross-System Requirement

Over and above the the logic of each subsystem, an additional logic is required

for handling behaviors involving a small number of subsystems. Consider for

example the following cross-system requirement:

The ADCS should not remain in, or switch to, payload-pointing

mode, while the EPS mode is low or critical.

Whether this requirement was provided originally, or after the first two

had been written and tested, the BP paradigm encourages us to add a new

b-thread for blocking this newly undesired behavior. The additional b-thread

is given in Listing 6.4.

6.2.2 Formal Verification of B-Programs

In order to verify that the on-board satellite control software works, we use

BPjs’ analysis engine for verification. Consider, as an example, the require-

ment that the ADCS should not switch to payload-pointing mode when the

EPS mode is low or critical. To achieve this objective, we use the bp.ASSERT()

method for marking such possibility as invalid (see Subsection 4.4.1). The as-

sertion is given in a new b-thread, presented in Listing 6.5.
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Listing 6.2: EPS (Electric Power Supply) b-thread
1 var EPSTelem = bp.EventSet("EPSTelem", function(e){
2 return e instanceof EPSTelemetry;
3 });
4

5 var LOW_MAX = 70;
6 var GOOD_MIN = 60;
7 var CRITICAL_MAX = 50;
8 var LOW_MIN = 40;
9

10 bp.registerBThread("EPS - Turn ON/OFF logic", function () {
11

12 /* Init */
13 var ePSTelem = bp.sync({ waitFor: EPSTelem });
14 if (ePSTelem.vBatt >= GOOD_MIN) {
15 bp.sync({ waitFor: EPSTelem ,
16 request: StaticEvents.SetEPSModeGood });
17 } else if (ePSTelem.vBatt >= LOW_MIN) {
18 bp.sync({ waitFor: EPSTelem ,
19 request: StaticEvents.SetEPSModeLow });
20 } else {
21 bp.sync({ waitFor: EPSTelem ,
22 request: StaticEvents.SetEPSModeCritical });
23 }
24 delete ePSTelem;
25

26 // ongoing control loop
27 while (true) {
28 var ePSTelem = bp.sync({ waitFor: EPSTelem });
29 switch ( ePSTelem.mode ) {
30 case EPSTelemetry.EPSMode.Good:
31 if (ePSTelem.vBatt < GOOD_MIN) {
32 bp.sync({ waitFor: EPSTelem ,
33 request: StaticEvents.SetEPSModeLow });
34 }
35 break;
36

37 case EPSTelemetry.EPSMode.Low:
38 if (ePSTelem.vBatt > LOW_MAX) {
39 bp.sync({ waitFor: EPSTelem ,
40 request: StaticEvents.SetEPSModeGood });
41 }
42 if (ePSTelem.vBatt < LOW_MIN) {
43 bp.sync({ waitFor: EPSTelem ,
44 request: StaticEvents.SetEPSModeCritical });
45 }
46 break;
47

48 case EPSTelemetry.EPSMode.Critical:
49 if (ePSTelem.vBatt > CRITICAL_MAX) {
50 bp.sync({ request: StaticEvents.SetEPSModeLow });
51 }
52 break;
53 }
54 }
55 });
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Listing 6.3: ADCS b-thread.
1 var ADCSTelem = bp.EventSet("ADCSTelem", function (e) {
2 return e instanceof ADCSTelemetry;
3 });
4

5 bp.registerBThread("ADCS Mode Switch logic", function () {
6 // Init Deployment
7 bp.sync({ request: StaticEvents.SetADCSModeDetumbling });
8

9 // ongoing
10 while (true) {
11 var aDCSEvent = bp.sync({ waitFor: ADCSTelem });
12 switch ( aDCSEvent.mode ) {
13 case ADCSTelemetry.ADCSMode.Detumbling:
14 if (aDCSEvent.angularRate == "Low" && aDCSEvent.isActivePass) {
15 bp.sync({ waitFor: ADCSTelem ,
16 request: StaticEvents.SetADCSModePayloadPointing });
17 } else if (aDCSEvent.angularRate == "Low") {
18 bp.sync({ waitFor: ADCSTelem ,
19 request: StaticEvents.SetADCSModeSunPointing });
20 }
21 break;
22 case ADCSTelemetry.ADCSMode.SunPointing:
23 if (aDCSEvent.angularRate == "Low" && aDCSEvent.isActivePass) {
24 bp.sync({ waitFor: ADCSTelem ,
25 request: StaticEvents.SetADCSModePayloadPointing });
26 } else if (aDCSEvent.angularRate == "High") {
27 bp.sync({ waitFor: ADCSTelem ,
28 request: StaticEvents.SetADCSModeDetumbling });
29 }
30 break;
31 case ADCSTelemetry.ADCSMode.PayloadPointing:
32 if (aDCSEvent.angularRate == "Low" && !aDCSEvent.isActivePass) {
33 bp.sync({ waitFor: ADCSTelem ,
34 request: StaticEvents.SetADCSModeSunPointing });
35 } else if (aDCSEvent.angularRate == "High") {
36 bp.sync({ waitFor: ADCSTelem ,
37 request: StaticEvents.SetADCSModeDetumbling });
38 }
39 break;
40 }
41 }
42 });
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Listing 6.4: Integrator b-thread.
1 bp.registerBThread("EPS & ADCS Integrator", function () {
2 while (true) {
3 var ePSTelem2 = bp.sync({ waitFor: EPSTelem });
4 while ( ePSTelem2.currentEPSMode == "Low" ||
5 ePSTelem2.currentEPSMode == "Critical" ) {
6 if ( ePSTelem2.isActivePass ) {
7 bp.sync({ waitFor: ADCSTelem ,
8 request: StaticEvents.PassDone ,
9 block: StaticEvents.SetADCSModePayloadPointing

10 });
11 }
12 var aDCSEvent2 = bp.sync({ waitFor: ADCSTelem ,
13 block: bp.Event("SetADCSModePayloadPointing")});
14 if (aDCSEvent2.currentADCSMode == "PayloadPointing") {
15 bp.sync({ waitFor: ADCSTelem ,
16 request: StaticEvents.SetADCSModeSunPointing ,
17 block: StaticEvents.SetADCSModePayloadPointing
18 });
19 }
20 var ePSTelem2 = bp.sync({ waitFor:EPSTelem ,
21 block:StaticEvents.SetADCSModePayloadPointing
22 });
23 }
24 }
25 });

Listing 6.5: A safety requirement b-thread, generating a false assertion when a
request to switch to the payload-pointing mode is made, while the EPS mode
is low or critical.
1 bp.registerBThread("NeverPointingOnLow", function () {
2 var relevantEvents = [EPSTelem , USE_PAYLOAD ];
3 /* Init */
4 var canPoint;
5 var evt = bp.sync({ waitFor: relevantEvents });
6 if (EPSTelem.contains(evt)) {
7 canPoint = evt.mode.equals(EPSTelemetry.EPSMode.Good);
8 }
9 /* ongoing verification */

10 while (true) {
11 var pointingRequested = false;
12 var evt = bp.sync({ waitFor: relevantEvents });
13 if (EPSTelem.contains(evt)) {
14 canPoint = evt.mode.equals(EPSTelemetry.EPSMode.Good);
15 } else if (USE_PAYLOAD.equals(evt)) {
16 pointingRequested = true;
17 }
18 bp.ASSERT (!( pointingRequested && !canPoint ));
19 }
20 });
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During verification, BPjs traverses a b-program’s state-space and searches

for various violations, including invalid program states (marked by false asser-

tions). If such a state is found, BPjs reports the sequence of program states

and events that led to the discovery of the invalid state.

This type of verification has some advantages over testing. First, it rig-

orously covers concurrent programs, as it looks at all possible event selection

orderings. Tests, by comparison, only look at a single event selection order.

This is a major problem when testing b-programs, because they are concur-

rent by design, and b-programmers strive to limit event selection order as little

as possible. Moreover, when a bug happens only when events are selected in

a specific order, a test may or may not detect it — depending on the event

selection order randomly selected during a specific test run. This may lead

developers to believe that a bug has been fixed when, in reality, a di↵erent

event selection order was used.

Another advantage of verification over testing is that verification returns

program traces, which contain data about how the program ended in an invalid

state. Tests, on the other hand, normally return stack traces, which only

contain data about the program at the point when the violation was detected.

Consider, for example, the common error of setting an object reference to null

(e.g. because a sub-procedure failed to return a valid object reference), and

then attempting to invoke methods through this reference. A unit test may

detect this issue, but will complain at the point of the invocation, i.e., where

the problem was discovered. The stack trace will not contain data about the

reference assignment, where the problem actually occurred.

The size of a B-program’s state space depends on the number of b-threads it

is composed of, and on the range of values they store. B-program state spaces

can be very large, and may even be infinite. An example of a b-program

with an infinite state space is the tracking rover verification b-program (see

Section 6.1), where one of the environment b-threads contains the unbounded

coordinates of the leading rover. This state explosion problem can be allevi-

ated by reducing the model size, e.g. by storing only required data at the right

abstraction level, by breaking one model into a number of sub-models, or by
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blocking some events during verification on the basis of reasonable assump-

tions. It is also possible to limit the length of the traversed path, an essential

feature for verifying infinite graphs.

Another option is to use modern multi-core/many-core servers and long

verification times to traverse large portions of the program state graph. While

this type of program analysis does not cover the entire program state-space,

it does scan a large amount of program states (depending on time and re-

sources allotted), and thus can provide some statistical guarantees of program

correctness.

The b-program analysis approach presented here di↵ers from “exhaustive

testing” in two major aspects. From a semantic perspective, it traverses the

system’s state-space rather than changes the system’s inputs. Thus, in addi-

tion to detecting safety violations, it can detect liveness violations, caused by

“bad” cycles that would result in infinite runs that violate the system’s spec-

ifications. Moreover, the analysis engine can be used to perform other state-

space analyses, such as drawing graphs and generating automatons. From a

performance perspective, the analysis process re-uses states by back-tracking

the system’s state space. This makes the analysis process more e�cient than

performing multiple runs, and allows the engine to detect more than a single

violation per run.

6.2.3 Simulating Environment For Verification

As previously noted, a b-program is verified by looking at all of its possible

runs. The verification is done on the b-program only, excluding actual sys-

tem interactions with the environment. Therefore, events emanating from the

system’s environment (telemetry events, for example) have to be simulated

during the verification process.

To this end, we create b-threads that act on behalf of the environment.

Conveniently, using BP to simulate the environment gives us greater control

over the events that can be requested by the environment, and how it responds

to model decisions.
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Requirement b-threads, such as the one presented in Listing 6.5, generate

false assertions when a b-program gets into an illegal state, and do not af-

fect normal program execution. Thus, they have to be a part of the verified

program, but may be omitted from the deployed b-program. When full verifi-

cation is possible, it is acceptable to omit them, as the verification proved that

the conditions they assert will never be false. At the semantic level, success-

ful full verification proves the requirements that these b-threads represent are

never violated. In cases where full verification is not possible (e.g., due to the

lack of resources/time), and if the system can be allowed to drop into a “safe

mode”, it is possible to include asserting b-threads in the deployed version.

We start with a b-thread that randomly generates all of the possible envi-

ronment events (shown in Listing 6.6). This b-thread requests EPSTelemetry

and ADCSTelemetry events in order; however, each event is arbitrarily chosen

from all possible events of each type. For example, an EPSTelemetry event

can be any of the 606 possible combinations of active pass (yes/no), battery

level (0 to 100 inclusive), and EPS mode (good/low/critical).

This type of environment is very easy to write, and does a good job of

finding problems in early versions of the model. Moreover, its execution graph

contains all possible environment behaviors. Therefore, if a b-program passes

verification in this environment, it can survive any environment. However,

such environments generate huge execution graphs, with a large number of

outgoing edges from nodes representing the synchronization points where the

controller waits for environment events. Thus, full verification using fully

non-deterministic environments is often unrealistic. Additionally, this type of

environment simulation may generate many false positives, because the real

environment is often more constrained.

We used these b-threads to verify our system. First, as a baseline, we

removed the cross-system b-thread (Listing 6.4), and successfully verified that

the system indeed violates the cross-system requirement. Next, we tried to

verify the system including the cross-system requirement. The verification

process scanned approximately 650K possible states, using 1.3M iterations,

without finding any violations. Since we chose the events randomly, it cannot
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Listing 6.6: A b-thread that randomly generates all possible EPSTelemetry
and ADCSTelemetry events.
1 var ACTIVE_PASSES = [false ,true];
2 var EPS_MODES = EPSTelemetry.EPSMode.values ();
3 var possibleEPSes = [];
4

5 for ( var vBatt =0; vBatt <= 100; vBatt++ ) {
6 for ( var modeIdx in EPS_MODES ) {
7 for ( var activePassIdx in ACTIVE_PASSES ) {
8 possibleEPSes.push( EPSTelemetry(vBatt , EPS_MODES[modeIdx],
9 ACTIVE_PASSES[activePassIdx ]) );

10 }}}
11

12 // Generate all possible ADCS Telemetries
13 var ADCS_MODES = ADCSTelemetry.ADCSMode.values ();
14 var ANGULAR_RATES = ADCSTelemetry.AngularRate.values ();
15 var possibleADCSes = [];
16 for ( var adcsModeIdx in ADCS_MODES ) {
17 for ( var angularRateIdx in ANGULAR_RATES ) {
18 for ( var activePassIdx in ACTIVE_PASSES ) {
19 possibleADCSes.push( ADCSTelemetry(ADCS_MODES[adcsModeIdx],
20 ANGULAR_RATES[angularRateIdx],
21 ACTIVE_PASSES[activePassIdx ]) );
22 }}}
23

24 bp.registerBThread("Environment", function (){
25 while ( true ) {
26 bp.sync({ request:possibleEPSes }); // Choose a random EPSTelemery event
27 bp.sync({ request:possibleADCSes }); // Choose a random ADCSTelemery event
28 }});
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Listing 6.7: A trace of the events that led to a violation of the system that
does not include the the cross-system b-thread.
1 [BEvent name:SetADCSModeDetumbling]
2 [BEvent name:EnvSetAngularRateLow]
3 [BEvent name:PassDone]
4 [EPSTelemetry vBatt:1 currentEPSMode:Good activePass:false]
5 [BEvent name:SetEPSModeCritical]
6 [ADCSTelemetry currentADCSMode:Detumbling angularRate:Low activePass:false]
7 [BEvent name:SetADCSModeSunPointing]
8 [EPSTelemetry vBatt:2 currentEPSMode:Critical activePass:false]
9 [ADCSTelemetry currentADCSMode:SunPointing angularRate:Low activePass:false]

10 [EPSTelemetry vBatt:3 currentEPSMode:Critical activePass:false]
11 [ADCSTelemetry currentADCSMode:SunPointing angularRate:Low activePass:false]
12 [EPSTelemetry vBatt:4 currentEPSMode:Critical activePass:false]
13 [ADCSTelemetry currentADCSMode:SunPointing angularRate:Low activePass:false]
14 [EPSTelemetry vBatt:5 currentEPSMode:Critical activePass:false]
15 [ADCSTelemetry currentADCSMode:SunPointing angularRate:Low activePass:false]
16 [EPSTelemetry vBatt:6 currentEPSMode:Critical activePass:false]
17 [ADCSTelemetry currentADCSMode:SunPointing angularRate:Low activePass:false]
18 [EPSTelemetry vBatt:7 currentEPSMode:Critical activePass:false]
19 [ADCSTelemetry currentADCSMode:SunPointing angularRate:Low activePass:false]
20 [EPSTelemetry vBatt:8 currentEPSMode:Critical activePass:false]
21 [ADCSTelemetry currentADCSMode:SunPointing angularRate:Low activePass:false]
22 [EPSTelemetry vBatt:9 currentEPSMode:Critical activePass:false]
23 [ADCSTelemetry currentADCSMode:SunPointing angularRate:Low activePass:false]
24 [EPSTelemetry vBatt :10 currentEPSMode:Critical activePass:false]
25 [ADCSTelemetry currentADCSMode:SunPointing angularRate:Low activePass:false]
26 [BEvent name:ActivePass]
27 [EPSTelemetry vBatt :11 currentEPSMode:Critical activePass:true]
28 [ADCSTelemetry currentADCSMode:SunPointing angularRate:Low activePass:true]
29 [BEvent name:SetADCSModePayloadPointing]

be promised that we covered all possible runs.

A more realistic environment simulation generates the telemetry events ac-

cording to previous selected events. For example, whenever a SetEPSModeGood

event is selected, the following EPSTelemetry event will represent this mode

switch. The complete code for this simulation can be found in [4]. We verified

the system using this environment, again in two steps — initially without the

cross-system b-thread, and then with it.

As before, the first run resulted with a trace of the events that led to a

violation, presented in Listing 6.7. For all possible runs of up to 200 consecutive

selected events, the second approach was able to verify that there were no

violations — and in less than 2.5 minutes. Runs of a greater depth (i.e.,

longer) can also be verified using this approach.
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6.2.4 Hybrid Lab Testing Environment

In this subsection we describe our on-going work on a novel hybrid laboratory

for the advanced simulation and testing of satellite-mission software, where

scenario-based programming is used to automatically generate complex test

scenarios. This lab is already being used for integrating and testing a full-

scale satellite on-board software suite by our group at Ben-Gurion University.

The hybrid lab consists of a simulation computer (desktop PC), and an

on-board computer (OBC), which runs the on-board software. The simulation

computer runs MATLAB, STK, and custom software for simulating satellite

sensors (e.g., temperature, sun, magnetometers), actuators (e.g., magneto-

torquers, wheels, heaters), and all the other satellite subsystems that the OBC

interacts with (e.g., EPS, communications, payload). MATLAB is used for

evaluating and running the satellite’s dynamics model. STK is used for eval-

uating and running the environment model (e.g., gravity and magnetic fields,

and earth coverage).

The hybrid lab’s layout is depicted in Figure 6.3. The simulation computer

interacts with the OBC through the native electrical on-board connectors used

by the real hardware that the PC simulates. Thus, from the OBC’s perspec-

tive, the hybrid lab setup is identical to the setup used in orbit.

The presented hybrid lab allows developers to test on-board software in

various scenarios. Examples of such scenarios are hardware failures, specific

orbits, and environmental conditions written as a scenario-based test software.

Additionally, the lab’s layout makes it possible to gradually replace simulated

devices with their actual counterparts. In turn, this facility for gradual re-

placement allows for testing the integration of hardware components with the

simulator, the OBC, and the on-board software.

We note that this hybrid laboratory design allows for testing on-board

satellite software not necessarily written using scenario-based programming.

While all programs may (and often, do) contain bugs, the use of BP and

high-level languages such as Java and JavaScript introduces new capabilities

to on-board mission software debugging. Using our hybrid lab and Java de-

bugging and profiling tools, we are able to test non-BP sections of the satellite
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Figure 6.3: The hybrid lab layout. MATLAB and STK, running on a simu-
lation computer, simulate the satellite’s dynamics, environment, and various
hardware components. The OBC and the simulation computer interact using
the native electrical on-board connectors used by the real hardware that the
PC simulates.

software developed. These include: the software components responsible for

listening to events and sending commands to the actual hardware; components

that translate sensor data and communications into external events pushed to

the b-program; and the BPjs runtime system itself. As an example, with this

lab set-up, we were able to e�ciently detect and fix a memory leak bug within

the BPjs tool. Detecting and fixing similar bugs in a C program, as usually

used in satellite software, may prove to be a di�cult task. Moreover, the fixed

software will need to go through the (expensive) testing process again.

6.2.5 Conclusion

This section present three contributions to the field of on-board satellite soft-

ware programming and testing:

Software. A novel approach for programming satellites software, using

BP.

Verification. A tool and methodology for verifying the correctness of the
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proposed on-board satellite software, which operates by looking at all of its

possible runs, ensuring that they all comply with a set of formal requirements.

This verification can be performed on specific parts of a model, on specific

logical layers of an application, or on an entire model at a specific abstraction

level.

Testing. A novel hybrid laboratory for advanced simulation and testing

of satellite-mission software, where scenario-based programming is used to

automatically generate complex test scenarios.

While the provided examples have been simplified for the purpose of this

paper, we are confident that the approaches outlined in this chapter can be

applied to full-scale on-board satellite software. Our group at Ben-Gurion Uni-

versity is currently working on such a case study, which we hope will validate

the scalability of our proposed approach.

6.3 Related Work

The main property of SBM distinguishing it from standard programming,

executable modeling in, say, fUML [86] and Alf [87], rule-based or publish-

subscribe systems [28], or highly intuitive visual languages like Statecharts

or UML-RT[92], is its compositional semantics. Specifically, in SBM, inde-

pendently specified threads of behavior running in parallel can be composed

automatically by the infrastructure, with support for forbidden behavior, strict

event ordering, or satisfying multiple concurrent requests with a single event

triggering — to mention a few examples. This also enables alignment of the

software structure with its requirements.

This advantage also holds in comparisons with systems geared towards

parallel synchronized executions and optional voting, like SystemC [89], Es-

terel [11], or multi-agent systems. SBM can be distinguished from the sepa-

ration of concerns in Aspect Oriented Programming (AOP) [66] and similar

techniques in that there is no distinction between base and modifications or ex-

ceptions thereto, and that the anchors of specifications are usually meaningful

system events rather than particular pre-existing method names. Scenarios
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also manage states conveniently; state management in AOP join points re-

quires non-trivial programming. The BIP (behavior, interaction, priority) [13]

language has similar goals and terminologies; however, it focuses on the devel-

opment of a system that is correct-by-construction, while SBM concentrates

on programming in a natural way, and turns to techniques like model-checking

to discover design issues.

Another approach for combining scenarios for test generation, based on

synthesis and LSC, is proposed in [74]. Under that proposed approach, tests

are strategies for generating environment events. Tests are created by detecting

cases where an environment can cause di↵erent activated LSCs to refer to

common objects. This approach allows for a minimal set of tests that allow

maximal coverage of cases where multiple scenarios interact.

One common concern in system testing and analysis is external side e↵ects.

In the current case study, these include the e↵ect of turning on a satellite heat-

ing unit, or rotating a rover and activating its wheel engines at 50% e↵ort.

Other domains may include writes to databases and file systems, or sending

and receiving data through a network. The solutions presented here use en-

vironment simulation b-threads to incorporate the side e↵ects in the verified

model. Other systems, such as NASA’s JavaPathFinder [57], use a similar

approach, by defining “native peer” classes that model these side e↵ects.

We proposed using lengthy analysis runs in order to cover significant por-

tions of program state-space, when that space is too large to fully traverse and

verify. Microsoft applies a similar approach in its SAGE system [14]. SAGE

uses fuzz testing [12] to test products. But unlike regular fuzz testing, which

generates inputs at random, SAGE analyses the verified binaries for execution

paths. It then generates the fuzz inputs on the basis of this analysis, in order

to maximize executable coverage.

6.4 Conclusion

In this chapter, we presented two examples of systems designed using the

Model-Driven Engineering approach. Both used BP for creating their model.
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By using BPjs as the BP platform, we were able to easily embed the models

in Java host applications. Additionally, we were able to directly verify these

models, including environment simulation where needed.

Model-Driven Engineering is a promising approach for the creation of com-

plex software. Using BP and BPjs for the model layer allows for the design of

highly reliable models, and consequently reliable software and hybrid systems.
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Chapter 7

Conclusions and Additional

Proposed Research

This chapter discusses general conclusions and possible directions for future

research.

In this dissertation we assessed the potential uses of Behavioral Program-

ming across a range of engineering and research contexts. We started by

defining BP in a modular, parameterized way. This led us to define synchro-

nization statements and modular event selection strategies, that can be used

both during runtime and during program analysis. It also enabled us to view

b-program execution as a traversal of a state-space graph, where the nodes

are the running b-program at a given synchronization point, and the edges are

events that, at said point, have been requested and not blocked. While earlier

research has touched on some of these topics, ours is the first BP definition

to include all these aspects, and to support them with pluggable, modular

runtime and analysis software framework — BPjs.

The conceptual work done while developing our notion of a running b-

program is reflected in code. As with most BP runtime implementations,

BPjs initially had a BThread class, the runtime representation of a b-thread.

As we progressed, we realized that while b-threads are a useful concept for

the BP programmer, this is less the case for the BP runtime, which is only

interested at the state of the b-thread during synchronization points. Thus, we
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removed the BThread class, and replaced it with BThreadSyncSnapshot, which

captures the state of a b-thread immediately after it submits a synchronization

statement.

Based on this definition of BP, we created a bi-directional communica-

tion protocol that can be used to embed a running b-program in a traditional

software system. This makes model-driven engineering using BP easier, as it

allows system designers to leave low-level tasks to the host application, and

to focus their BP model on high-level decision making. This separation is im-

portant for two reasons. First, it facilitates the re-use of models, because they

now no longer need to take technical, platform-specific details into account.

Second, it makes models smaller, and thus easier to analyze and verify.

The proof of a pudding is in the eating; thus, it would be interesting to

see whether BPjs, and our definition of BP, gain traction as more people give

it a byte. So far, BPjs have been used in a number of university classes and

student projects (in addition to the usages described in Chapter 6). It is also

used as the main BP research platform for our BP research group at Ben-

Gurion University of the Negev — three graduate students using it in their

research projects.

7.1 Possible Future Research Directions

Future extensions of the work presented in this dissertation can be directed in

two possible directions: inward and outward.

7.1.1 Inward

Inward work will involve extensions and alterations to our definition of BP. One

such direction is the implementation of new event selection strategies. Possible

examples of this approach include strategies that impose fairness by limiting

starvation; strategies optimized towards advancing the maximal number of b-

threads; and strategies that harness machine learning or planning to optimize

some aspect of program execution. Meta-strategies, that combine multiple
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strategies and adapt to current b-program’s needs, are another interesting

path for future research. Once enough strategies are available, we will be

able to compare and contrast them. More importantly, we will be able to

curate them for re-use, tailoring a strategy to a given b-program based on its

properties and the resources available for its execution.

Resource allocation is another interesting topic. Specifically, as BPjs have

broken the connection between an OS thread and a b-thread, we can now try

di↵erent strategies for matching OS threads to b-threads. Should we use thread

pools of fixed size, or create and destroy threads during program execution?

Can we predict the optimal thread pool size for a b-program? How is OS

thread handling a↵ected by changes to the size or number of CPUs, memory,

or average amount of b-threads advancing between synchronization points?

Robust answers to these questions will allow b-programs to run faster and

more e�ciently, thereby enabling the use of larger, more complex models.

B-program verification o↵ers many research opportunities and open ques-

tions. We currently use depth-first search; whilst this does work, there is

clearly room for improvement. As an example: we could incorporate heuris-

tics for selecting the events that the verifier should explore first on entering a

new node. This could speed up the process of bug discovery.

DFS is inherently single-threaded: at each point, only a single node in

the state-space is explored. Parallelizing the verification process — perhaps

using a breadth-first search with heuristics — may reduce verification time. A

natural extension of this would be the distribution of the b-program analysis

process across a large number of machines.

One specific direction in which parallelism and distribution can be taken is

with the integration of graph-based databases into the process. In such cases,

a large number of machines will traverse a b-program’s state-space, adding the

nodes and edges discovered to a central graph database. The b-program could

then be analyzed by querying the database.

A future direction we plan to explore is that of adding fairness support to

the verifiers presented here (see [3, C3.5]). In some cases, liveness violation

analysis can return a valid, but nevertheless very unlikely counter example.
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These counter examples can be ignored safely; a fairness parameter o↵ers an

accurate way of filtering them out.

7.1.2 Outward

Outward work will use BP as a foundation for building other systems. One

interesting example would be extending the work described in Chapter 5 to de-

fine additional languages. A further extension could be in integrating language

definitions, thereby creating a heterogeneous modeling environment whose un-

derlying semantic layer is defined and implemented using BP. Model hetero-

geneity o↵ers a compelling alternative to model generality [72]. The Ptolemy

Project [27] explores heterogeneous modeling for concurrent, real-time embed-

ded systems using an actor-based approach; it will be interesting to compare

and contrast it with BP-based heterogeneous modeling.

Another interesting research direction is the use of BP in model-driven

engineering (MDE), for creating systems in various domains. This would allow

the community to determine the domains best served by BP. A comparative

analysis of such projects will give useful pointers regarding what makes a

domain a good fit for BP. It is always interesting to see a theory meeting the

real world — will the problems that will be faced be caused by the paradigm,

or by technical limitations such as b-thread count and performance? Will we

identify reoccurring design patterns in these systems’ BP code? Will we be

able to re-use b-threads across domains?

Finally, a task that is not purely academic: we would like to see BPjs

gain non-academic traction, through adoption by general software engineering

practitioners. This is a task that other BP implementations — and model

driven systems in general — are yet to achieve1. MDE tools are traditionally

cited as a barrier for MDE adoption (see [101] for research overview). How-

ever, social and organizational barriers are often as important as the technical

ones [19, 101]. Thus, adopting MDE is not just a technical decision, as it

would involve significant business considerations.

1
This may be a bit of “my thesis will have some e↵ect on the world” text; I hope the

reader will forgive this self-indulgence, in the final few paragraphs of a dissertation.
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Whittle et al. [101] conclude that tool makers should “match tools to peo-

ple, not the other way around.” They o↵er a taxonomy of the tool-related

hurdles that prevent practitioners from adopting MDE. These include version-

ing, chaining, flexibility, tool and language complexity, usability, conformance

with human abstractions, theoretical foundations and formal semantics, train-

ing, quality of generated code, upfront investment (migration, tool integra-

tion), and organizational inertia.

The technological foundation we chose for building BPjs allows it to fit into

the modern programming eco-system. Rather than using a unique workbench,

BPjs is packaged as a library, its code arranged using the popular, IDE-agnostic

Apache Maven system. This allows programmers to use their preferred tools,

thus addressing usability (since the programmer can use her regular editor),

tool integration, and training. It also reduces the inertial impact of adopting

BPjs. Creating models in JavaScript allows engineers to use their existing

knowledge for model creation. It is also a better fit for code versioning and

review tools than node-based formats such as XML. The design choices enabled

through the use of familiar design patterns such as Strategy and Observer

flatten the learning curve, address issues such as chaining, tool complexity,

and flexibility, and solves code-creation issues by design. BP itself, as we have

seen, conforms with human abstractions, is well-founded theoretically, and

provides intuitive formal semantics.

All these make BPjs the first “blue-collar BP platform”. The programming

proletarians have nothing to lose but their chains.
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תקציר עברי 
נושא העבודה: הרחבת גישת התכנות ההתנהגותי עבור תכנון מבוסס מודלים 

מנחה: ד״ר גרא וייס 

תכנות התנהגותי (BP - Behavioral Programming) היא פרדיגמה תכנותית המאפשרת לתאר מערכות בעלות 

התנהגות מורכבת על ידי אוסף התנהגויות סדרתיות (single threaded) הנשזרות באופן אלגוריתמי בזמן ריצה. כל 

התנהגות כזו מכונה b-thread, והיא נכתבת על ידי קוד סדרתי רגיל. ה-b-threads הנשזרים יכולים לא רק להוסיף 

  b-threads-פעולות למערכת, אלא גם לתאם פעולות על ידי המתנה, ולהחסיר פעולות על ידי חסימות. שזירת ה

מתבססת על נקודות סנכרון, בהן ה-b-threads יכולים לבקש, לחסום, או להמתין לאירועים. תיאור זה מתאים 

במיוחד למערכות תגובתיות (reactive systems) - מערכות המגיבות לאירועים בסביבתן כחלק ממהלך הפעולה 

הרגיל שלהן. מערכות כאלו נפוצות מאוד, וכוללות שרתי אינטרנט, רכבים אוטונומיים, וממשקי משתמש. 

לתיאור מערכת על ידי אוסף b-threads מספר יתרונות חשובים. ראשית, תיאור זה אינטואיטיבי מאוד, כיוון שהוא 

דומה לתיאור דרישות המערכת כפי שהן ניתנות בשפה אנושית. שנית, תאור זה מאפשר לשנות ולעדן (refine) את 

התנהגות המערכת הכוללת על ידי הוספה של b-threads חדשים (כאמור, הוספה של b-thread לא בהכרח מוסיפה 

התנהגות חדשה - היא יכולה גם למנוע התנהגות לא רצוייה). שלישית, ניתן יחסית בקלות להתייחס לתאור זה כאל 

 formal) מודל פורמלי של מערכת, לנתח אותו באופן ממוחשב ואף לאמת את נכונותו בייחס למפרט דרישות פורמלי

 .(verification
תכנות התנהגותי, שהוצג לראשונה ב-2010 על ידי הראל, מרון, ו–וייס, הוא סוג של תכנות מבוסס תסריטים. שיטה 

נוספת של תכנות מבוסס תסריטים היא  Live Sequence Charts (LSC), שהוצגה על ידי דאם והראל ב-2001. שפת 

LSC מאפשרת אף היא לבצע הוספות וחסימות, אולם מתמקדת בהודעות העוברות בין אובייקטים, במקום 

באירועים (שהם אובייקטים נטולי מקור או יעד מוגדרים). הבדל נוסף בין LSC ל-BP הוא ששפת LSC מבוססת על 

שרטוטים ולא על טקסט. לאחרונה הוצגו גרסאות מבוססות טקסט ל-LSC, אולם גם הן מתמקדות בהעברת הודעות 

בין אובייקטים. 

 JavaScript ,Blockly ,C++ ,Java-הוצגו בעבר, כולל ספריות הרצה ל BP מספר מערכות להרצה וניתוח של תוכניות

ו-Erlang. שתי מערכת מתקדמות יחסית הן BPJ, שאיפשרה תכנות התנהגותי בשפת Java, ו-BPC, המאפשרת 

תכנות התנהגותי בשפת ++C. שתי הספריות איפשרו ניתוח מוגבל של תוכניות BP. גרסה אחת של BPJ אפשרה 

בדיקת תכונות בטיחות, אולם אינה שימושית יותר מסיבות טכניות. BPC מאפשרת ניתוח על ידי תרגום של התוכנית 

למודל וניתוח על ידי כלי חיצוני. שתי ספריות אלו נבנו כפלטפורמה שעליה ניתן לבנות תוכנות BP, אולם באופן שונה 

מהעבודה המוצגת כאן: ספריית BPJ ניתנה להרחבה ועידון על ידי שינוי הקוד שלה, ואילו BPC מתוכננת כמסגרת 

תוכנית (framework) ולא כספריה הניתנת להטמעה במערכות תוכנה מסורתיות. 
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תחום מערכות מידול תוכנה הוא תחום נרחב מאוד, וכולל כמובן גם פרדיגמות שאינן BP. אפשר לציין כאן 

 Foundational-ו xUML כדוגמת (executable semantics) בעלות סמנטיקה ביצועית UML תתי-קבוצות של

UML. שפת Umple מאפשרת לשלב מודלים של UML בקוד רגיל על ידי מחוללי קוד: המתכנתת עובדת עם 

מודלים, והמערכת מחוללת מהם קוד רגיל (למשל ב-Java) לפני הרצת המערכת. גישה נוספת לאימות מערכות מומשה 

 (Java bytecode) אחרי קומפלציה Java המבצע ווריפיקציה על תוכנות ,JavaPathFinder על ידי נאס״א בפרוייקט
על ידי בדיקת כל הריצות האפשריות של המערכת. בדיקה כזו כמובן יסודית מאוד, אולם דורשת זמן ומשאבים 

הגדלים באופן מעריכי עם סיבוכיות התוכנית. לכן גישה זו יקרה אפילו עבור תוכניות פשוטות, ועלולה להיות בלתי 

ישימה לתוכנות מסובכות. 

עבודה זו מרחיבה את BP, ובוחנת את השימוש בו ככלי מרכזי בהנדסת תוכנה של מערכות תגובתיות, בדגש על תכנון 

 ;BP במסגרת עבודה זו פותחו הגדרה מודולרית וניתן להרחבה של .(model-driven engineering) מבוסס מודלים

פרוטוקול תקשורת בין מודל BP לתוכנות מסורתיות, המאפשר הטמעה של מודלי BP בתוכנות אלו; הגדרת ממשק 

עבור אלגוריתם בחירת האירועים המאפשרת להשתמש במימוש ספציפי של אלגוריתם גם להרצת תוכנית BP וגם 

לניתוח שלה; הוספת אידיומים חדשים ל-BP: מטא-דאטה לנקודות סנכרון, סימון הפרות של תכונות בטיחות וחיות, 

פיצול b-threads, והגדרת קבוצת אירועים שמסיימת את הרצת ה-b-thread; בנייה של מערכת אנליזה, הרצה, 

ואימות של תוכניות BP, הראשונה שיכולה לזהות הפרה של תכונות חיות ומתבססת על הרצה ישירה (בניגוד לתרגום 

למודלים אחרים); זיהוי שתי מחלקות של הפרות תכונות חיות ב-BP, ומקרה בו נוח יותר לנסח הפרה של תכונת 

בטיחות כהפרה של תכונת חיות; מתודולוגיה לכתיבת מערכות תגובתיות על בסיס מודל BP; מתודולוגיה לתיאור 

סמנטיקה של שפות מידול בעזרת BP; תעוד נרחב של מערכת ההרצה והניתוח של BP שפותחה כחלק מהפרוייקט, 

כולל שני שימושים לדוגמא של המערכת; וגישה חדשה לסריאליזציה והשוואת מצב של תוכניות BP (שאף הניבה 

 .(Mozilla תרומת קוד לפרוייקט קוד פתוח של

במסגרת עבודה זו אנו מציגים את BPjs - כלי להרצה, ניתוח, והטמעה של תוכניות BP במערכות תוכנה מסורתיות. 

מערכת זו מתייחסת לתוכניות BP כאל מודל ממוחשב, כך שהרצתן היא בעצם פעולה רגילה על מודל, ולא מקרה 

מיוחד. בנוסף, מערכת זו היא הראשונה המאפשרת ניתוח של תכונות בטיחות וחיות של של תוכניות BP, ומבצעת 

זאת באופן ישיר - ללא תרגום למודל מסוג אחר וללא שימוש בכלים חיצוניים. בניגוד למערכות קודמות, מערכת 

BPjs תוכננה כפלטפורמה הניתנת להרחבה מודולרית ולהטמעה במערכות קיימות. לדוגמא, ניתן לשנות את 

האלגוריתם השוזר את ה-b-threads בקלות, להוסיף קוד המגיב לאירועים אותם המערכת בוחרת, או לבחור 

אלגוריתם לניתוח תוכניות BP (המערכת הוצגה עם מספר אלגוריתמים, אולם תוכננה כך שיהיה קל להוסיף חדשים). 

תכונות אלו הופכות את BPjs לתשתית מחקרית ואפליקטיבית לתחום ה-BP בפרט, ולתחום מערכות מבוססות 

מודלים בכלל. 

אחד מהניתוחים החשובים שאפשר לעשות למערכת הוא אימות - בדיקה מלאה כי היא עומדת בדרישות פורמליות 

(למשל: ״כל בקשה לשרת תקבל תגובה״, או ״אין להפעיל את ציוד התצפית כאשר רמת הטעינה של הבטריה מתחת 

לסף מסויים״). קיימות שתי קבוצות בסיסיות של תכונות פורמליות של מערכת: תכונות בטיחות (X לא קורה) 
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ותכונות חיות (במהלך הריצה יקרה Y). מחלקות אלו חשובות, כיוון שכל תכונה של המערכת המתייחסת לזמן באופן 

לינארי ניתן להביע על ידי שילוב של תכונות אלו. עבודה זו מאפשרת לבדוק את קיומן של תכונות משתי המחלקות 

האלו במערכת BP. לגבי תכונות חיות - למיטב ידיעתינו זוהי המערכת הראשונה המאפשרת בדיקה זו (ולכן, גם 

המערכת הראשונה המאפשרת בדיקת תכונות זמן לינארי כלליות). 

על מנת לאפשר בדיקה של תכונות אלו, b-threads ב-BPjs יכולים לסמן כי א) הם זיהוי הפרה של תכונת בטיחות, 

ב) הם מצפים להתקדם מעבר לנקודה מסויימת בקוד. בעת אימות תוכנית BP, המערכת עוברת על כל ההרצות 

האפשריות של התוכנית. מעבר זה מתבצע על ידי הקפאה של התוכנית בכל נקודת סנכרון שלה, ואז בחינת כל 

ההמשכים האפשריים משם. למעשה, BPjs עוברת על גרף ההרצה של התוכנית, כאשר נקודות הסנכרון הן הצמתים 

ואילו האירועים הם הקשתות. 

אם, בעת מעבר על גרף ההרצה, BPjs מזהה כי אחד ה-b-threads סימן כי תכונת בטיחות כלשהי הופרה, המערכת 

מחזירה את נתיב ההרצה שהוביל לשגיאה. נתיב זה כולל את האירועים שנבחרו, ואת מצבי התוכנית. אם, לעומת 

זאת, המערכת מזהה בגרף ההרצה מעגל שבכל צמתיו b-thread מסויים מסמן שהוא רוצה להתקדם, היא מדווחת על 

הפרה של תכונת בטיחות. זאת מכיוון שאם המערכת תרוץ לאורך מעגל זה, אותו b-thread לעולם לא יגיע למצב בו 

הוא יכול להשאר. כאן גם מצאנו הפרדה בין שני מצבים: מעגל בו b-thread יחיד חייב להתקדם כל הזמן (הפרה של 

תכונת החיות אותה ה-b-thread מייצג), ומעגל בו בכל צומת קיים לפחות b-thread אחד שחייב להתקדם, אבל לכל 

אחד מה-b-threads ישנו לפחות צומת אחד בו הוא מוכן להשאר. מצב כזה לא בהכרח מהווה הפרה של תכונת חיות 

— תלוי בתכנון המערכת. 

בעת אימות תוכנית BP יש לפעמים להוסיף b-threads שידמו את סביבת התוכניות, או ייצגו דרישות מערכת 

מסויימות שלא מיוצגות באופן ישיר על ידי b-threads במערכת. לדוגמא, בעת אימות של תוכנית שליטה ברכב 

אוטונומי, יש להוסיף b-threads שידמו את סביבת הרכב על ידי בקשת אירועי טלמטריה, או ידמו תקלות מסויימות 

על ידי יצירת דיווחים אודותיהן. בנוסף, ניתן להוסיף b-threads המייצגים דרישות מערכת בסגנון ״לבסוף הרכב מגיע 

ליעד״. בנוסף, אם רוצים למקד את האימות בריצות מסוג מסויים, ניתן להוסיף b-threads שיחסמו את הריצות 

שאינן מסוג זה. 

כאמור לעיל, קיימות שפות מידול פורמלי רבות, המתאימות לתיאור אספקטים שונים של מערכות. בפרט, בבניה של 

מערכת תגובתית מבוססת מודל, נרצה לעיתים להשתמש בשפה שאינה BP על מנת לתאר תכונות מסויימות של 

המערכת, בד בבד עם תיאור חלקים אחרים של המערכת ב-BP. בנוסף, נרצה להמשיך להשתמש בתשתית התיאורטית 

והטכנולוגית להטמעת מערכות BP במערכת המסורתית המשמשת לקידוד החלקים ה-״נמוכים״ של המערכת (למשל, 

קריאת חיישנים והפעלת מנועים). לצורך זה, עבודה זו מציגה מתודולוגיה לתאור סמנטיקה של שפות מידול בעזרת 

BP. המתודולוגיה מתבססת על ביצוע שאילתות על קוד המקור של המודל (לאו דווקא טקסטואלי - יכול להיות גם 
מבוסס שרטוטים). התוצאה של כל שאילה היא אוסף מבנים בשפת המידול. לפי המתודולוגיה המוצעת כאן, מבנים 

 BP לאחר ביצוע סדרה של שאילתות כאלו, נוצרת תוכנית .BP ומתווספים לתוכנית ,b-threads-אלו מתורגמים ל

 .LSC שסמנטיקת ההרצה שלה זהה לזו של המודל בשפה המקורית. אנו מדגימים מתודולוגיה זו על שפת
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שיטת הגדרה זו מאפשרת לא רק לשלב מודלים משפות שונות במודלים של BP, אלא גם ליצור מנועי הרצה לשפות 

מידול בעלות סמנטיקה ביצועית, לבחון בקלות יחסית שינויים בסמנטיקה של שפות מידול, ולהציג את הסמנטיקה 

של שפות מידול באופן נגיש למתכנתים, שרגילים לקרוא קוד ופחות רגילים לקרוא נוסחאות מעברים מתמטיות. 

על מנת לבחון את השימוש ב-BP כשכבת המודל במערכות תגובתיות מבוססות מודלים, עבודה זו מציגה שני מקרי 

בוחן (case studies). הראשון בודק את המתודולוגיה על רכב אוטונומי שנדרש לעקוב אחרי רכב אוטונומי אחר; 
השני משתמש במתודולוגיה על מנת לכתוב תוכנת הרצה ללויין, ועל מנת לבדוק אותה. 

במקרה הבוחן של הרכב האוטונומי, מציג תוכנית שליטה ברכב שמטרתו לעקוב אחרי רכב אחר, תוך שמירת מרחק 

בטוח (לא רחוק מדי ולא קרוב מדי). תכנון המערכת מתבסס על הטמעת מודל BPjs בתוכנת Java, כאשר המודל 

אחראי על החלטות המערכת (מתי לפנות, כמה להאיץ) ואילו שכבת ה-Java אחראית על קריאת החיישנים ומסירת 

המידע למודל מחד, והאזנה להחלטות המודל וביצוען מאידך. המודל עצמו נבנה בגישה של התנהגות דיפולטית עם 

החרגות, והורכב משלושה b-threads . ה-b-thread הראשון אחראי על ההתנהגות הדיפולטית ודורש לנסוע קדימה 

בשיא המהירות כל הזמן. שני b-threads נוספים אחראים על החרגות: הראשון מתקן את הכיוון של הרכב כאשר אינו 

פונה לכיוון הרכב המוביל, והשני נוסע קדימה לאט כאשר הרכב מתקרב למוביל יתר על המידה. 

בעזרת מנגנוני האימות, הצלחנו לזהות שגיאות במודל, כגון מרוץ (race condition) שגרם לרכב להתקדם במהירות 

לא נכונה בתנאים מסויימים. 

במקרה הבוחן של הלווין - חלק מפרוייקט ארוך טווח לבניית מעבדה לתוכנות לוייניות מבוססות BP - נבנתה מערכת 

בקרה עם ארכיטקטורה דומה (מודל BPjs מוטמע בתוך תוכנית Java). במסגרת העבודה המוצגת כאן מומשו שני 

מודולים, האחד אחראי על ניהול האנרגיה והשני על בקרת הכוון, וכן אלגוריתם המתאם ביניהם. המערכת עצמה רצה 

על מחשב לוויני הנמצא במעבדה. על מנת לדמות תנאי טיסה אמיתיים, המחשב הלווייני מחובר לסנסורים, או 

למכשירים המדמים סנסורים ומכשירים שונים (למשל מדמי גופי חימום). מכשירים אלו מחוברים למחשב שולחני 

שקובע אילו נתונים הם ישלחו על מנת לדמות סביבת טיסה. נתונים אלו נקבעים על ידי תוכנת STK, המיועדת 

לסימולציה של משימות חלל, ועל ידי תוכנית MATLAB, המחשבת סימולציה של נתוני הלווין. גם במערכת זו 

אימתנו את המודל שאחראי על החלטות המערכת, על מנת לוודא כי אינו מכיל שגיאות. 

ניתן להמשיך את העבודה המוצגת כאן לשני כיוונים: פנימה (חקר BP) והחוצה (שימוש ב-BP ככלי להנדסה 

מבוססת-מודלים של מערכות תוכנה). כלפי פנים, עבודה זו מניחה תשתית תיאורטית המגובה בכלים מעשיים 

לבדיקה של אלגוריתמי בחירת אירועים, אנליזה של תוכניות BP, סקירת גרפי ההרצה שלהן, וכן שימושים נוספים 

בתשתיות ההרצה והאנליזה של BPjs.  כלפי חוץ, עבודה זו מדגימה איך ניתן להשתמש ב-BP ו-BPjs על מנת לבנות 

מערכות תגובתיות מבוססות מודלים. על בסיס ידע זה ניתן לבנות מודלים מסובכים יותר, לחקור תבניות תכן 

שימושיות (design patterns) של תוכניות BP, לחקור מודולריזציה ושימוש חוזר בקוד (בפרט, ב-b-threads), ולפתח 
כלים נוספים המאפשרים הנדסת מערכות תוכנה תחת מתודולוגיה זו. 

מילות מפתח: תכנות התנהגותי, הנדסת תוכנה, תכנון מבוסס מודלים, אימות תוכנה, דרישות פורמלית, בקרה. 
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